Phonon polaritons (PhPs) have attracted significant interest in the nano-optics communities because of their nanoscale confinement and long lifetimes. Although PhP modification by changing the local dielectric environment has been reported, controlled manipulation of PhPs by direct modification of the polaritonic material itself has remained elusive. Here, chemical switching of PhPs in α-MoO 3 is achieved by engineering the α-MoO 3 crystal through hydrogen intercalation. The intercalation process is non-volatile and recoverable, allowing reversible switching of PhPs while maintaining the long lifetimes. Precise control of the intercalation parameters enables analysis of the intermediate states, in which the needle-like hydrogenated nanostructures functioning as in-plane antennas effectively reflect and launch PhPs and form well-aligned cavities. We further achieve spatially controlled switching of PhPs in selective regions, leading to in-plane heterostructures with various geometries. The intercalation strategy introduced here opens a relatively non-destructive avenue connecting infrared nanophotonics, reconfigurable flat metasurfaces and van der Waals crystals.
2D and layered electronic materials characterized by a kagome lattice, whose valence band structure includes two Dirac bands and one flat band, can host a wide range of tunable topological and strongly correlated electronic phases. While strong electron correlations have been observed in inorganic kagome crystals, they remain elusive in organic systems, which benefit from versatile synthesis protocols via molecular self‐assembly and metal‐ligand coordination. Here, direct experimental evidence of local magnetic moments resulting from strong electron–electron Coulomb interactions in a 2D metal–organic framework (MOF) is reported. The latter consists of di‐cyano‐anthracene (DCA) molecules arranged in a kagome structure via coordination with copper (Cu) atoms on a silver surface [Ag(111)]. Temperature‐dependent scanning tunneling spectroscopy reveals magnetic moments spatially confined to DCA and Cu sites of the MOF, and Kondo screened by the Ag(111) conduction electrons. By density functional theory and mean‐field Hubbard modeling, it is shown that these magnetic moments are the direct consequence of strong Coulomb interactions between electrons within the kagome MOF. The findings pave the way for nanoelectronics and spintronics technologies based on controllable correlated electron phases in 2D organic materials.
π-Complexation triggered Lewis acid-base interactions between open metal sites (OMS) of metal-organic frameworks (MOFs), and π-e(-) rich adsorptive benzene (Bz) is exploited to establish M-MOF-74 as the best Bz-selective MOF sorbent, marking the first report of utilizing OMS behind benzene/cyclohexane separation; a key advance from the energy-economy standpoint of industrial separation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.