Rhipicephalus sanguineus s.l. (Latreille, 1806) can establish populations in residences and may lead to severe domestic and peridomestic infestations. Detection in the early infestation stage is challenging because of their small body size and the lack of visibility when ticks stay in sheltered refugia. The residents may believe that the infestation has been eliminated when no ticks are observed until ticks reappear when seeking hosts. Thus, it is necessary to improve our understanding of tick phenology to achieve more effective infestation management. In this study, the relationships between environmental conditions and tick development were explored in laboratory and using linear and nonlinear models. Three R. sanguineus s.l. strains, from one colony of the temperate lineage and two of the tropical lineage, were evaluated for the development of all life stages and conversion efficiency index (CEI) under five temperatures and four relative humidities (RHs). The development times differed between the three tick strains across stages and were primarily dependent on temperature. The CEIs had little variance explained by temperature, RH, or strains. Compared with the linear and exponential models with temperature as the only variable, the Brière-1 model was the best approximating model for most of the developmental rates. The developmental temperature thresholds for R. sanguineus s.l. development estimated by the Brière-1 model varied inconsistently across strains and life stages. We developed a more predictive relationship between environmental factors and R. sanguineus s.l. development, which can be utilized to predict tick development using temperature and develop appropriate control strategies.
Background Chagas disease remains a persistent vector-borne neglected tropical disease throughout the Americas and threatens both human and animal health. Diverse control methods have been used to target triatomine vector populations, with household insecticides being the most common. As an alternative to environmental sprays, host-targeted systemic insecticides (or endectocides) allow for application of chemicals to vertebrate hosts, resulting in toxic blood meals for arthropods (xenointoxication). In this study, we evaluated three systemic insecticide products for their ability to kill triatomines. Methods Chickens were fed the insecticides orally, following which triatomines were allowed to feed on the treated chickens. The insecticide products tested included: Safe-Guard® Aquasol (fenbendazole), Ivomec® Pour-On (ivermectin) and Bravecto® (fluralaner). Triatoma gerstaeckeri nymphs were allowed to feed on insecticide-live birds at 0, 3, 7, 14, 28 and 56 days post-treatment. The survival and feeding status of the T. gerstaeckeri insects were recorded and analyzed using Kaplan–Meier curves and logistic regression. Results Feeding on fluralaner-treated chickens resulted 50–100% mortality in T. gerstaeckeri over the first 14 days post-treatment but not later; in contrast, all insects that fed on fenbendazole- and ivermectin-treated chickens survived. Liquid chromatography tandem mass spectrometry (LC-QQQ) analysis, used to detect the concentration of fluralaner and fenbendazole in chicken plasma, revealed the presence of fluralaner in plasma at 3, 7, and 14 days post-treatment but not later, with the highest concentrations found at 3 and 7 days post-treatment. However, fenbendazole concentration was below the limit of detection at all time points. Conclusions Xenointoxication using fluralaner in poultry is a potential new tool for integrated vector control to reduce risk of Chagas disease. Graphical Abstract
Rhipicephalus sanguineus s.l. (Latreille), is a vector of multiple disease-causing pathogens to humans and dogs. Permethrin and fipronil are two acaricides used to manage R. sanguineus s.l. infestations. Homeowners have reported treatment failures in managing brown dog ticks using permethrin and fipronil based products. Previous studies demonstrated that high permethrin resistance in some R. sanguineus s.l. populations was due to metabolic detoxification and target site insensitivity. In this study, three R. sanguineus s.l. strains, one from a laboratory colony (NC) and two colonies originally collected from Florida (FL) and California (CA), were evaluated for resistance expression against permethrin and fipronil. Metabolic detoxification mechanisms were evaluated in the FL strain using three synergists, while a polymerase chain reaction assay was used to detect a resistance mutation in all strains. The NC strain was susceptible to both permethrin and fipronil, while both the FL and CA strains exhibited high resistance to permethrin and tolerance to fipronil. The synergist tests and PCR results indicated that the FL strain utilized both metabolic resistance and target site insensitivity against permethrin, while the CA strain was documented to have the target-site insensitivity resistant allele. This study confirmed permethrin resistance in both California and Florida populations and its persistence in Florida populations, although its susceptibility can potentially be increased by adding a synergist. Fipronil resistance was not detected suggesting this acaricide may provide suitable tick control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.