Recombinant adeno-associated virus (AAV) vectors are of interest for cochlear gene therapy because of their ability to mediate the efficient transfer and long-term stable expression of therapeutic genes in a wide variety of postmitotic tissues with minimal vector-related cytotoxicity. In the present study, seven AAV serotypes (AAV1-5, 7, 8) were used to construct vectors. The expression of EGFP by the chicken beta-actin promoter associated with the cytomegalovirus immediate-early enhancer in cochlear cells showed that each of these serotypes successfully targets distinct cochlear cell types. In contrast to the other serotypes, the AAV3 vector specifically transduced cochlear inner hair cells with high efficiency in vivo, while the AAV1, 2, 5, 7, and 8 vectors also transduced these and other cell types, including spiral ganglion and spiral ligament cells. There was no loss of cochlear function with respect to evoked auditory brain-stem responses over the range of frequencies tested after the injection of AAV vectors. These findings are of value for further molecular studies of cochlear inner hair cells and for gene replacement strategies to correct recessive genetic hearing loss due to monogenic mutations in these cells.
BackgroundQuinoa (Chenopodium quinoa Willd.) is a balanced nutritional crop, but its breeding improvement has been limited by the lack of information on its genetics and genomics. Therefore, it is necessary to obtain knowledge on genomic variation, population structure, and genetic diversity and to develop novel Insertion/Deletion (InDel) markers for quinoa by whole-genome re-sequencing.ResultsWe re-sequenced 11 quinoa accessions and obtained a coverage depth between approximately 7× to 23× the quinoa genome. Based on the 1453-megabase (Mb) assembly from the reference accession Riobamba, 8,441,022 filtered bi-allelic single nucleotide polymorphisms (SNPs) and 842,783 filtered InDels were identified, with an estimated SNP and InDel density of 5.81 and 0.58 per kilobase (kb). From the genomic InDel variations, 85 dimorphic InDel markers were newly developed and validated. Together with the 62 simple sequence repeat (SSR) markers reported, a total of 147 markers were used for genotyping the 129 quinoa accessions. Molecular grouping analysis showed classification into two major groups, the Andean highland (composed of the northern and southern highland subgroups) and Chilean coastal, based on combined STRUCTURE, phylogenetic tree and PCA (Principle Component Analysis) analyses. Further analysis of the genetic diversity exhibited a decreasing tendency from the Chilean coast group to the Andean highland group, and the gene flow between subgroups was more frequent than that between the two subgroups and the Chilean coastal group. The majority of the variations (approximately 70%) were found through an analysis of molecular variation (AMOVA) due to the diversity between the groups. This was congruent with the observation of a highly significant FST value (0.705) between the groups, demonstrating significant genetic differentiation between the Andean highland type of quinoa and the Chilean coastal type. Moreover, a core set of 16 quinoa germplasms that capture all 362 alleles was selected using a simulated annealing method.ConclusionsThe large number of SNPs and InDels identified in this study demonstrated that the quinoa genome is enriched with genomic variations. Genetic population structure, genetic core germplasms and dimorphic InDel markers are useful resources for genetic analysis and quinoa breeding.Electronic supplementary materialThe online version of this article (10.1186/s12864-017-4093-8) contains supplementary material, which is available to authorized users.
In the wake of recent progress of high throughput transcriptome profiling technologies, extensive housekeeping gene mining has been conducted in humans. However, very few studies have been reported in maize (Zea mays L.), an important crop plant, and none were conducted on a genome -wide level. In this study, we surveyed housekeeping genes throughout the maize transcriptome using RNA-seq and microarray techniques, and validated the housekeeping profile with quantitative polymerase chain reaction (qPCR) under a series of conditions including different genotypes and nitrogen supplies. Seven microarray datasets and two RNA-seq libraries representing 40 genotypes at more than 20 developmental stages were selected to screen for commonly expressed genes. A total of 1,661 genes showed constitutive expression in both microarray and RNA-seq datasets, serving as our starting housekeeping gene candidates. To determine for stably expressed housekeeping genes, NormFinder was used to select the top 20 % invariable genes to be the more likely candidates, which resulted in 48 and 489 entries from microarray and RNA-seq data, respectively. Among them, nine genes (2OG-Fe, CDK, DPP9, DUF, NAC, RPN, SGT1, UPF1 and a hypothetical protein coding gene) were expressed in all 40 maize diverse genotypes tested covering 16 tissues at more than 20 developmental stages under normal and stress conditions, implying these as being the most reliable reference genes. qPCR analysis confirmed the stable expression of selected reference gene candidates compared to two widely used housekeeping genes. All the reference gene candidates showed higher invariability than ACT and GAPDH. The hypothetical protein coding gene exhibited the most stable expression across 26 maize lines with different nitrogen treatments with qPCR, followed by CDK encoding the cyclin-dependent kinase. As the first study to systematically screen for housekeeping genes in maize, we identified candidates by examining the transcriptome atlas generated from RNA-seq and microarray technologies. The nine top-ranked qPCR-validated novel housekeeping genes provide a valuable resource of reference genes for maize gene expression analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.