LY-450139 is a ␥-secretase inhibitor shown to have efficacy in multiple cellular and animal models. Paradoxically, robust elevations of plasma amyloid- (A) have been reported in dogs and humans after administration of subefficacious doses. The present study sought to further evaluate A responses to LY-450139 in the guinea pig, a nontransgenic model that has an A sequence identical to that of human. Male guinea pigs were treated with LY-450139 (0.2-60 mg/kg), and brain, cerebrospinal fluid, and plasma A levels were characterized at 1, 3, 6, 9, and 14 h postdose. Low doses significantly elevated plasma A levels at early time points, with return to baseline within hours. Higher doses inhibited A levels in all compartments at early time points, but elevated plasma A levels at later time points. To determine whether this phenomenon occurs under steadystate drug exposure, guinea pigs were implanted with subcutaneous minipumps delivering LY-450139 (0.3-30 mg/kg/day) for 5 days. Plasma A was significantly inhibited at 10 -30 mg/kg/day, but significantly elevated at 1 mg/kg/day. To further understand the mechanism of A elevation by LY-450139, H4 cells overexpressing the Swedish mutant of amyloid-precursor protein and a mouse embryonic stem cell-derived neuronal cell line were studied. In both cellular models, elevated levels of secreted A were observed at subefficacious concentrations, whereas dose-responsive inhibition was observed at higher concentrations. These results suggest that LY-450139 modulates the ␥-secretase complex, eliciting A lowering at high concentrations but A elevation at low concentrations.The pathological accumulation of amyloid- peptide into dense core plaques in the brains of Alzheimer's disease patients is the ultimate target of multiple disease-modifying drug discovery efforts. One strategy that has entered the clinic is the use of a ␥-secretase inhibitor to reduce central A production. Preclinically, multiple ␥-secretase inhibitors have demonstrated central and peripheral A-lowering activity in transgenic mouse lines overexpressing human mutant amyloid precursor protein (Dovey et al., 2001;Cirrito et al., 2003;Lanz et al., 2003Lanz et al., , 2004Wong et al., 2004;, as well as nontransgenic species (Anderson et al., 2005;Best et al., 2006;El Mouedden et al., 2006). Whereas acute treatment of old, plaque-bearing mice should have little immediate impact on plaque load (insoluble A), these inhibitors have been shown to inhibit A in CSF (Lanz et al., 2003;Barten et al., 2005) and interstitial fluid (Cirrito et al., 2003) similarly in both plaque-free and plaque-bearing mice. In addition, plasma A has been shown to be reduced similarly by ␥-secretase inhibition in both young and old Tg2576 mice (Lanz et al., 2003;Barten et al., 2005). These findings indicate that despite the presence or absence of insoluble A plaques, these compounds had similar potency in reducing soluble, secreted A in young and old transgenic mice.The ability of plasma and CSF A to track pharmacologic...
Previous studies indicate that corticotropinreleasing factor (CRF) contributes to the anxiety-like and aversive states associated with drug-induced withdrawal. The present study extends this work by analyzing the CRF receptor subtype involved in withdrawal responses. First, the influence of a selective CRF receptor-1 (CRF-R1) antagonist, CP-154,526, on opiate withdrawal behavior was examined. Pretreatment with the CRF-R1 antagonist significantly attenuated several behavioral signs of naltrexone-induced morphine withdrawal, including writhing, chewing, weight loss, lacrimation, salivation, and irritability, measured during the first hour of withdrawal. Next the expression of CRF-R1 was determined as a second measure of the involvement of this receptor in opiate withdrawal. Naltrexone-induced morphine withdrawal resulted in down-regulation of CRF-R1 mRNA in several brain regions, including the frontal cortex, parietal cortex, striatum, nucleus accumbens, and amygdala, but not in the hypothalamus or periaqueductal gray. Expression of CRF-R2, the other major CRF receptor subtype, was not down-regulated significantly by withdrawal in any of the regions examined, although morphine alone significantly increased levels of this receptor subtype. Taken together, the behavioral and receptor regulation findings indicate that CRF-R1 is the primary mediator of the actions of the CRF system on opiate withdrawal, although it is possible that CRF-R2 contributes to the response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.