The novel T-type antagonist ( S)- 5 has been prepared and evaluated in in vitro and in vivo assays for T-type calcium ion channel activity. Structural modification of the piperidine leads 1 and 2 afforded the fluorinated piperidine ( S)- 5, a potent and selective antagonist that displayed in vivo CNS efficacy without adverse cardiovascular effects.
Phenethyl isothiocyanate is stable in biological samples, with increased stability under refrigerated conditions. It has high oral bioavailability, low clearance, and high protein binding in rats; nonlinear elimination and distribution occur following the administration of high doses. This investigation represents the first report of the pharmacokinetics of dietary PEITC.
The discovery of a novel series of potent and selective T-type calcium channel antagonists is reported. Initial optimization of high-throughput screening leads afforded a 1,4-substituted piperidine amide 6 with good potency and limited selectivity over hERG and L-type channels and other off-target activities. Further SAR on reducing the basicity of the piperidine and introducing polarity led to the discovery of 3-axial fluoropiperidine 30 with a significantly improved selectivity profile. Compound 30 showed good oral bioavailability and brain penetration across species. In a rat genetic model of absence epilepsy, compound 30 demonstrated a robust reduction in the number and duration of seizures at 33 nM plasma concentration, with no cardiovascular effects at up to 5.6 microM. Compound 30 also showed good efficacy in rodent models of essential tremor and Parkinson's disease. Compound 30 thus demonstrates a wide margin between CNS and peripheral effects and is a useful tool for probing the effects of T-type calcium channel inhibition.
The inhibitory effect of boceprevir (BOC), an inhibitor of hepatitis C virus nonstructural protein 3 protease was evaluated in vitro against a panel of drug-metabolizing enzymes and transporters. BOC, a known substrate for cytochrome P450 (P450) CYP3A and aldoketoreductases, was a reversible time-dependent inhibitor (k inact = 0.12 minute
21, K I = 6.1 mM) of CYP3A4/5 but not an inhibitor of other major P450s, nor of UDP-glucuronosyltransferases 1A1 and 2B7. BOC showed weak to no inhibition of breast cancer resistance protein (BCRP), P-glycoprotein (Pgp), or multidrug resistance protein 2. It was a moderate inhibitor of organic anion transporting polypeptide (OATP) 1B1 and 1B3, with an IC 50 of 18 and 4.9 mM, respectively. In human hepatocytes, BOC inhibited CYP3A-mediated metabolism of midazolam, OATP1B-mediated hepatic uptake of pitavastatin, and both the uptake and metabolism of atorvastatin. The inhibitory potency of BOC was lower than known inhibitors of CYP3A (ketoconazole), OATP1B (rifampin), or both (telaprevir). BOC was a substrate for Pgp and BCRP but not for OATP1B1, OATP1B3, OATP2B1, organic cation transporter, or sodium/taurocholate cotransporting peptide. Overall, our data suggest that BOC has the potential to cause pharmacokinetic interactions via inhibition of CYP3A and CYP3A/OATP1B interplay, with the interaction magnitude lower than those observed with known potent inhibitors. Conversely, pharmacokinetic interactions of BOC, either as a perpetrator or victim, via other major P450s and transporters tested are less likely to be of clinical significance. The results from clinical drug-drug interaction studies conducted thus far are generally supportive of these conclusions.
ABSTRACT:In this study, induction and inhibition of rhesus monkey CYP3A64 versus human CYP3A4 were characterized in vitro, and the corresponding pharmacokinetic consequences were evaluated in rhesus monkeys. In monkey hepatocytes, rifampin markedly induced CYP3A64 mRNA (EC 50 ؍ 0.5 M; E max ؍ 6-fold) and midazolam (MDZ) 1-hydroxylase activity (EC 50
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.