To develop the high-performance filters and duplexers required for recent long-term evolution frequency bands in mobile handsets, a surface acoustic wave (SAW) resonator is needed that has a higher quality (Q) and a lower temperature coefficient of frequency (TCF). To achieve this, the authors focused on acoustic energy confinement in the depth direction for a rotated Y-X LiTaO (LT) substrate. Characteristics of multilayered substrates with low-impedance and high-impedance layers under LT layer were studied numerically in terms of acoustic energy distribution, phase velocity, coupling coefficient, and temperature characteristics employing a finite-element method simulation. After several calculations, a novel multilayered structure was developed that uses SiO for a low-impedance layer and AlN for a high-impedance layer under the thin LT layer. A one-port resonator using the new substrate was fabricated, and its experimental results showed that the developed resonator had a Bode-Q over 4000 and TCF of -8 ppm/°C, which are four times higher than and one-fifth as small as those of a conventional 4° YX-LT SAW resonator, respectively. By applying this technology, a band 25 duplexer with very narrow duplex gap was successfully developed, which shows extremely low insertion loss, steep cutoff characteristics, and stable temperature characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.