The
fabrication of deformable devices has been explored by interconnecting
nonstretchable unit devices with stretchable conductors or by developing
stretchable unit devices consisting of all stretchable device components
such as electrodes, active channels, and dielectric layers. Most researches
have followed the first approach so far, and the researches based
on the second approach are at the very beginning stage. This paper
discusses the perspectives of the second approach, specifically focusing
on the polymer semiconductor channel layers, that is expected to facilitate
high density device integration in addition to large area devices
including polymer solar cells and light-emitting diodes. Three different
routes are suggested as separate sections according to the principles
imparting stretchability to polymer semiconductor layers: structural
configurations of rigid semiconductors, two-dimensional network structure
of semiconductors on elastomer substrates, and ductility enhancement
of semiconductor films. Each section includes two subsections divided
by the methodological difference. This Perspective ends with discussion
on the future works for the routes and the challenges related to other
device components.
DNA catalysts (deoxyribozymes) for a variety of reactions have been identified by in vitro selection. However, for certain reactions this identification has not been achieved. One important example is DNA-catalyzed amide hydrolysis, for which a previous selection experiment instead led to DNA-catalyzed DNA phosphodiester hydrolysis. Subsequent efforts in which the selection strategy deliberately avoided phosphodiester hydrolysis led to DNA-catalyzed ester and aromatic amide hydrolysis, but aliphatic amide hydrolysis has been elusive. In the present study, we show that including modified nucleotides that bear protein-like functional groups (any one of primary amino, carboxyl, or primary hydroxyl) enables identification of amide-hydrolyzing deoxyribozymes. In one case, the same deoxyribozyme sequence without the modifications still retains substantial catalytic activity. Overall, these findings establish the utility of introducing protein-like functional groups into deoxyribozymes for identifying new catalytic function. The results also suggest the longer-term feasibility of deoxyribozymes as artificial proteases.
In Parkinson's disease (PD), neuroinflammation plays a critical role in the neurodegenerative process. Furthermore, activated microglia and astrocytes, responsible for activated immune response in the central nervous system, are found in regions associated with dopaminergic neuronal death. The flavonoid baicalein is known to have antibacterial, antiviral, and antiinflammatory activities. In the present study, the neuroprotective effects of baicalein were examined in a murine 1-methyl-4-phenyl-1,2,3,4-tetrahydropyridine (MPTP) model of PD. Low doses of baicalein improved motor ability and prevented dopaminergic neuron loss caused by MPTP. In addition, microglial and astrocyte activations were reduced in PD mice pretreated with baicalein. Further study of primary astrocytes revealed that baicalein suppressed the 1-methyl-4-phenylpyridine-induced nuclear translocation of nuclear factor-κB and reduced the activations of JNK and ERK, suggesting that the neuroprotective effects of baicalein in our PD model were due to attenuated astrocyte activation. The findings of this study indicate that baicalein could be useful for the treatment of PD and other neuroinflammation-related neurodegenerative diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.