Nonlinear responses of surface waves in rigid square and nearly square tanks partially filled with liquid subjected to obliquely horizontal, sinusoidal excitation are investigated theoretically and experimentally. Two predominant modes of sloshing are significantly coupled nonlinearly because their natural frequencies are nearly identical resulting in 1:1 internal resonance. Therefore, if only one of these modes is directly excited, the other mode is indirectly excited due to the nonlinear coupling. In the nonlinear theoretical analysis, the modal equations of motion are derived for the two predominant sloshing modes as well as five higher sloshing modes. The linear viscous terms are incorporated in order to consider the damping effect of sloshing. The expressions for the frequency response curves are determined using van der Pol’s method. The influences of the excitation direction and the aspect ratio of the tank cross-section on the frequency response curves are numerically examined. Planar and swirl motions of sloshing, and Hopf bifurcations followed by amplitude modulated motions including chaotic motions, are predicted when the excitation frequency is close to one of the natural frequencies of the two predominant sloshing modes. Lyapunov exponents are calculated and reveal the excitation frequency range over which liquid chaotic motions occur. In addition, bifurcation sets are shown to clarify the influences of the parameters on the change in the structural stability. The theoretically predicted results are in good agreement with the measured data, thus the theoretical analysis was experimentally validated.
Restoration of mechanical energy dissipating on impact at the ground is necessary for sustainable gait generation. Parametric excitation is one approach to restore the mechanical energy. Asano et al. ("Parametric excitation mechanisms for dynamic bipedal walking," IEEE International Conference on Robotics and Automation (2005) pp. 611-617.) applied parametric excitation to a biped robot with telescopic-legs, in which up-and-down motion restores total mechanical energy like playing on the swing. In this paper, parametric excitation principle is applied to a kneed biped robot with only knee actuation and it is shown that the robot walks successively without hip actuation. We also examine influences of several parameters and reference trajectory on walking performance.
Intrinsic localized modes (ILMs) are investigated in an array with N Duffing oscillators that are weakly coupled with each other when each oscillator is subjected to sinusoidal excitation. The purpose of this study is to investigate the behavior of ILMs in nonlinear multi-degree-of-freedom (MDOF) systems. In the theoretical analysis, van der Pol's method is employed to determine the expressions for the frequency response curves for fundamental harmonic oscillations. In the numerical calculations, the frequency response curves are shown for N = 2 and 3 and compared with the results of the numerical simulations. Basins of attraction are shown for a two-oscillator array with hard-type nonlinearities to examine the possibility of appearance of ILMs when an oscillator is disturbed. The influences of the connecting springs for both hard- and soft-type nonlinearities on the appearance of the ILMs are examined. Increasing the values of the connecting spring constants may cause Hopf bifurcation followed by amplitude modulated motion (AMM) including chaotic vibrations. The influence of the imperfection of an oscillator is also investigated. Bifurcation sets are calculated to show the influence of the system parameters on the excitation frequency range of ILMs. Furthermore, time histories are shown for the case of N = 10, and many patterns of ILMs may appear depending on the initial conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.