The effects of nitridation on the density of traps at SiO2/SiC interfaces near the conduction band edge were qualitatively examined using a simple, newly developed characterization method that utilizes Hall effect measurements and split capacitance–voltage measurements. The results showed a significant reduction in the density of interface traps near the conduction band edge as a result of nitridation, but the interface traps were not completely eliminated by nitridation.
The effects of oxynitridation and wet oxidation at the interface of SiO2/4H-SiC(0001) and
were investigated using both electrical and physical characterization methods. Hall measurements and split capacitance–voltage (C–V) measurements revealed that the difference in field-effect mobility between wet oxide and dry oxynitride interfaces was mainly attributed to the ratio of the mobile electron density to the total induced electron density. The surface states close to the conduction band edge causing a significant trapping of inversion carriers were also evaluated. High-resolution Rutherford backscattering spectroscopy (HR-RBS) analysis and high-resolution elastic recoil detection analysis (HR-ERDA) were employed to show the nanometer-scale compositional profile of the SiC-MOS interfaces for the first time. These analyses, together with cathode luminescence (CL) spectroscopy and transmission electron microscopy (TEM), suggested that the deviations of stoichiometry and roughness at the interface defined the effects of oxynitridation and wet oxidation at the interface of SiO2/4H-SiC(0001) and
.
We demonstrate 20 kV-class 4H-SiC n-channel implantation and epitaxial (IE)-IGBTs having both low on-state voltage and high blocking characteristics. We fabricated n-IE-IGBTs on a (0001) silicon face with free-standing epitaxial layers. Effective carrier lifetime increased significantly from 0.9 μs to 9.6 μs by a lifetime enhancement process. We used the IE structure to suppress an increase of the surface p+-well concentration, reduce implantation damage at the p+-well, and reduce junction field effect transistor (JFET) region resistance by ion implantation as a counter doping. The n-IE-IGBT at 100 A/cm2 on-state voltage and specific differential on-resistance was 8.2 V and 36.9 mΩcm2, respectively, at room temperature with a 30 V gate voltage. The blocking voltage was 26.8 kV at 45.7 μA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.