The phenolic compositions of non-germinated/germinated seeds and seed sprouts (at 6-10 day-old) of common (Fagopyrum esculentum Möench) and tartary (Fagopyrum tataricum Gaertn.) buckwheats were investigated. Phenolic compounds, including chlorogenic acid, four C-glycosylflavones (orientin, isoorientin vitexin, isovitexin), rutin and quercetin, were determined in the seed sprouts by high-performance liquid chromatography (HPLC). In the edible parts of common buckwheat sprouts, individual phenolics significantly increased during sprout growth from 6 to 10 days after sowing (DAS), whereas in tartary buckwheat sprouts they did not. While the sum contents of phenolic compounds in the edible part (mean 24.4mg/g DW at 6-10 DAS) of tartary buckwheat sprouts were similar to those of common buckwheat sprouts, rutin contents in the non-germinated/germinated seeds (mean 14.7mg/g DW) and edible parts (mean 21.8mg/g DW) of tartary buckwheat were 49- and 5-fold, respectively, higher than those of common buckwheat. Extracts of the edible parts of both species showed very similar free radical-scavenging activities (mean 1.7μmol trolox eq/g DW), suggesting that the overall antioxidative activity might be affected by the combination of identified phenolics and unidentified (minor) components. Therefore, buckwheat seed sprouts are recommended for their high antioxidative activity, as well as being an excellent dietary source of phenolic compounds, particularly tartary buckwheat sprouts, being rich in rutin.
The anthocyanin profiles and varieties/breeding line differences of anthocyanin concentrations in common/tartary buckwheat sprouts have been studied. Four anthocyanins, cyanidin 3-O-glucoside, cyanidin 3-O-rutinoside, cyanidin 3-O-galactoside, and cyanidin 3-O-galactopyranosyl-rhamnoside, were isolated from the sprouts of common buckwheat, were separated using high-performance liquid chromatography (HPLC), and were identified using reversed-phase liquid chromatography (LC)/electrospray ionization-mass spectrometry (ESI-MS)/MS techniques. In tartary buckwheat sprouts, two anthocyanins (cyanidin 3-O-glucoside and cyanidin 3-O-rutinoside) were identified. Among 19 common/tartary buckwheat varieties/breeding lines, Hokkai T10 contained the highest amounts of anthocyanins. Cyanidin 3-O-glucoside and cyanidin 3-O-rutinoside concentrations in 6-10 days after seeding sprouts of Hokkai T10 ranged from 0.16 to 0.20 mg/g dry wt and from 5.55 to 6.57 mg/g dry wt, respectively. In addition, dark-grown sprouts of Hokkai T10 accumulated 0.091 and 2.77 mg/g dry wt of cyanidin 3-O-glucoside and cyanidin 3-O-rutinoside whereas other varieties/breeding lines accumulated trace amounts of anthocyanins. Given its anthocyanin-rich red cotyledons, Hokkai T10 is a promising line for use as "Moyashi" type sprouts and is strongly recommended as a new functional food, rich in dietary anthocyanins.
Here, we developed a new Tartary buckwheat cultivar ‘Manten-Kirari’, whose flour contains only trace amounts of rutinosidase and lacked bitterness. The trace-rutinosidase breeding line ‘f3g-162’ (seed parent), which was obtained from a Nepalese genetic resource, was crossed with ‘Hokkai T8’ (pollen parent), the leading variety in Japan, to improve its agronomic characteristics. The obtained progeny were subjected to performance test. ‘Manten-Kirari’ had no detectable rutinosidase isozymes in an in-gel detection assay and only 1/266 of the rutinosidase activity of ‘Hokkai T8’. Dough prepared from ‘Manten-Kirari’ flour contained almost no hydrolyzed rutin, even 6 h after the addition of water, whereas the rutin in ‘Hokkai T8’ dough was completely hydrolyzed within 10 min. In a sensory evaluation of the flour from the two varieties, nearly all panelists detected strong bitterness in ‘Hokkai T8’, whereas no panelists reported bitterness in ‘Manten-Kirari’. This is the first report to describe the breeding of a Tartary buckwheat cultivar with reduced rutin hydrolysis and no bitterness in the prepared flour. Notably, the agronomic characteristics of ‘Manten-Kirari’ were similar to those of ‘Hokkai T8’, which is the leading variety in Japan. Based on these characteristics, ‘Manten-Kirari’ is a promising for preparing non-bitter, rutin-rich foods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.