Fish egg yolk is largely derived from vitellogenins, which are synthesized in the liver, taken up from the maternal circulation by growing oocytes via receptor-mediated endocytosis and enzymatically processed into yolk proteins that are stored in the ooplasm. Lipid droplets are another major component of fish egg yolk, and these are mainly composed of neutral lipids that may originate from maternal plasma lipoproteins. This review aims to briefly summarize our current understanding of the molecular mechanisms underlying yolk formation in fishes. A hypothetical model of oocyte growth is proposed based on recent advances in our knowledge of fish yolk formation.
Egg quality in fishes has been a topic of research in aquaculture and fisheries for decades as it represents an important life history trait and is critical for captive propagation and successful recruitment. A major factor influencing egg quality is proper yolk formation, as most fishes are oviparous and the developing offspring are entirely dependent on stored egg yolk for nutritional sustenance. These maternally derived nutrients consist of proteins, carbohydrates, lipids, vitamins, minerals, and ions that are transported from the liver to the ovary by lipoprotein particles including vitellogenins. The yolk composition may be influenced by broodstock diet, husbandry, and other intrinsic and extrinsic conditions. In addition, a number of other maternal factors that may influence egg quality also are stored in eggs, such as gene transcripts, that direct early embryonic development. Dysfunctional regulation of gene or protein expression may lead to poor quality eggs and failure to thrive within hours of fertilization. These gene transcripts may provide important markers as their expression levels may be used to screen broodstock for potential spawning success. In addition to such intrinsic factors, stress may lead to ovarian atresia or reproductive failure and can impact fish behavior, fecundity, and ovulation rate. Finally, postovulatory aging may occur when eggs become overripe and the fish fails to spawn in a timely fashion, leading to low fertility, often encountered during manual strip spawning of fish.
Multiple ovarian membrane proteins that bind vitellogenin (Vtg) have been detected in teleosts. One of these Vtg receptors was recently identified as low-density lipoprotein receptor-related protein 13 (lrp13/Lrp13) in perciform species, but little is known about this Vtg receptor in salmonid fish. In this study, a cDNA encoding a putative Vtg receptor with 13+1 ligand binding repeats (lr13+1) was cloned from the ovary, and identified as an lrp13 ortholog for cutthroat trout (Oncorhynchus clarki). This lrp13 was predominantly expressed in the pre-vitellogenic stage ovary, and its expression decreased during vitellogenesis. Ovarian localization of Lrp13 was observed by immunohistochemistry using specific antiserum against recombinant Lrp13. Lrp13 immunoreactivity was observed at the oolemma, throughout the zona radiata, and within the perivitelline space between the zona radiata and granulosa cells in ovarian follicles at both the lipid-droplet and vitellogenic stages of growth-an expression pattern that mimics that of a lr8/LR8-type Vtg receptor in this species and of lrp13/Lrp13 in Morone species. Six discrete Vtg-binding proteins were detected in cutthroat trout ovarian membrane proteins when probing with a digoxygenin-labeled salmonid A-type Vtg (VtgAs) followed by chemiluminescent ligand detection. Western blotting using the anti-Lrp13 serum revealed a broad signal consisting of two proteins with masses ranging from ∼190 to ∼210 kDa, which corresponded with some of the VtgA-binding proteins. These findings suggest that, in addition to lr8/LR8, lrp13/Lrp13 acts as a VtgA receptor in trout.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.