Virulence of human cytomegalovirus (HCMV) clinical isolates correlates with carriage of a 15 kb segment in the UL/b' region of the viral genome, which is absent from attenuated strains. The mechanisms by which this segment contributes to HCMV virulence remain obscure. We observed that intergenic RNA sequences within the 15 kb segment function as a microRNA (miRNA) decay element (miRDE) and direct the selective, sequence-specific turnover of mature miR-17 and miR-20a encoded within the host miR-17-92 cluster. Unlike canonical miRNA-mRNA interactions, the miRNA-miRDE interactions did not repress miRDE expression. miRNA binding site mutations retargeted miRDE to other miR-17-92 cluster miRNAs, which are otherwise resistant to miRDE-mediated decay. miRDE function was required to accelerate virus production in the context of lytic HCMV infection. These results indicate a role for viral noncoding RNA in regulating cellular miRNAs during HCMV pathogenesis and suggest that noncoding RNAs may play a role in mature miRNA turnover.
Temporal profiles of miRNA activity during productive virus infection can provide fundamental insights into host-virus interactions. Most reported miRNA targetome analyses in the context of virus infection have been performed in latently infected cells and lack reliable models for quantifying the suppression efficacy at specific miRNA target sites. Here, we identified highly competent temporal miRNA targetomes during lytic HCMV infection by using AGO-CLIP-seq together with a bioinformatic method that quantifies miRNA functionality at a specific target site, called ACE-scoring. The repression efficiency at target sites correlates with the magnitude of the ACE-score, and temporal HCMV-encoded miRNA targetomes identified by ACE-scoring were significantly enriched in functional categories involved in pathways central for HCMV biology. Furthermore, comparative analysis between human and viral miRNA targetomes supports the existence of intimate cooperation and co-targeting between them. Our holistic survey provides a valuable resource for understanding host-virus interactions during lytic HCMV infection.
The electron microscopic examination of the abnormally dark regions of the gill from hard clam, Meretrix lusoria, revealed that there were virus-like particles present in the cytoplasm of necrotic cells. With TO-2 cell line, the virus was isolated. Electron microscopic examinations showed that there were no detactable differences in morphology and location of virions in the gill cells of clam and TO-2 cells except that virus crystals were infrequently observed in clam gills. The subsequent serological and biochemical studies indicated that all the virus isolates from clam were similar to AB IPNV (infectious pancreatic necrosis virus). These studies represent the first com plete characterizations of virus isolated from clam in Taiwan.
The innate immune system detects viral nucleic acids and induces type I interferon (IFN) responses. The RNA-and DNA-sensing pathways converge on the protein kinase TANK-binding kinase 1 (TBK1) and the transcription factor IFN-regulatory factor 3 (IRF3). Activation of the IFN signaling pathway is known to trigger the redistribution of key signaling molecules to punctate perinuclear structures, but the mediators of this spatiotemporal regulation have yet to be defined. Here we identify butyrophilin 3A1 (BTN3A1) as a positive regulator of nucleic acid-mediated type I IFN signaling. Depletion of BTN3A1 inhibits the cytoplasmic nucleic acid-or virus-triggered activation of IFN-β production. In the resting state, BTN3A1 is constitutively associated with TBK1. Stimulation with nucleic acids induces the redistribution of the BTN3A1-TBK1 complex to the perinuclear region, where BTN3A1 mediates the interaction between TBK1 and IRF3, leading to the phosphorylation of IRF3. Furthermore, we show that microtubuleassociated protein 4 (MAP4) controls the dynein-dependent transport of BTN3A1 in response to nucleic acid stimulation, thereby identifying MAP4 as an upstream regulator of BTN3A1. Thus, the depletion of either MAP4 or BTN3A1 impairs cytosolic DNA-or RNA-mediated type I IFN responses. Our findings demonstrate a critical role for MAP4 and BTN3A1 in the spatiotemporal regulation of TBK1, a central player in the intracellular nucleic acid-sensing pathways involved in antiviral signaling.BTN3A1 | type I IFN signaling | TBK1-IRF3 axis | MAP4 | dynein
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.