Breast cancer (BC) is the leading cause of cancer-related deaths among women worldwide. Ginsenosides exhibit anticancer activity against various cancer cells. However, the effects of ginsenoside Rh1 on BC and the underlying mechanisms remain unknown. Here, we investigated the anticancer effects of Rh1 on human BC MCF-7 and HCC1428 cells and the underlying signaling pathways. The anticancer effects of Rh1 in vitro were evaluated using sulforhodamine B (SRB), 3-(4, 5-dimethylthiazole-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), clonogenic assay, propidium iodide (PI)/Hoechst staining, Western blotting, flow cytometry, and immunofluorescence analysis. The in vivo effects of Rh1 were determined using a xenograft model via hematoxylin and eosin and the immunohistochemistry staining of tumor tissues. We found that Rh1 exerted cytotoxicity in the cells by increasing cell apoptosis, autophagy, and cell cycle arrest. These effects were further enhanced by a phosphatidylinositol 3-kinase (PI3K) inhibitor but were rescued by the inhibition of reactive oxygen species (ROS). Moreover, enhanced ROS generation by Rh1 inhibited the activation of the PI3K/Akt pathway. Consistently, Rh1 treatment significantly reduced tumor growth in vivo and increased the ROS production and protein expression of LC3B and cleaved caspase-3 but decreased the phosphorylation of Akt and retinoblastoma (Rb) in tumor tissues. Taken together, Rh1 exerted a potential anticancer effect on BC cells by inducing cell cycle arrest, apoptosis, and autophagy via inhibition of the ROS-mediated PI3K/Akt pathway.
Breast cancer (BC) a very common cancer in women worldwide. Triple negative breast cancer (TNBC) has been shown to have a poor prognosis with a high level of tumor metastatic spread. Here, the inhibitory effects of ginsenoside-Rh1 (Rh1) on BC metastasis, and its underlying signaling pathway in TNBC were investigated. Rh1-treated MDA-MB-231 cells were analyzed for metastasis using a wound healing assay, transwell migration and invasion assay, western blotting, and qRT-PCR. Rh1 treatment significantly inhibited BC metastasis by inhibiting the both protein and mRNA levels of MMP2, MMP9, and VEGF-A. Further, Rh1-mediated inhibitory effect on BC migration was associated with mitochondrial ROS generation. Rh1 treatment significantly eliminated STAT3 phosphorylation and NF-κB transactivation to downregulate metastatic factors, such as MMP2, MMP9, and VEGF-A. In addition, Mito-TEMPO treatment reversed Rh1 effects on the activation of STAT3, NF-κB, and their transcriptional targets. Rh1 further enhanced the inhibitory effects of STAT3 or NF-κB specific inhibitor, stattic or BAY 11-7082 on MMP2, MMP9, and VEGF-A expression, respectively. In summary, our results revealed the potent anticancer effect of Rh1 on TNBC migration and invasion through mtROS-mediated inhibition of STAT3 and NF-κB signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.