A new reverse transcriptase (RT) inhibitor was extracted and purified from the red alga Schizymenia pacifica. The chromatographic behavior and chemical properties of this sea algal extract (SAE) suggest that it is a sulfated polysaccharide having a molecular weight of approximately 2,000,000. SAE is composed of galactose (73%), sulfonate (20%), and 3,6-anhydrogalactose (0.65%). SAE is a member of the X-carrageenan family, based on its infrared spectrum and products of hydrolysis. SAE selectively inhibited human immunodeficiency virus (HIV) RT and replication in vitro. When MT-4 cells were treated with more than 104 inhibitory units (IU) of SAE per ml after HIV infection, significant inhibition of viral antigen synthesis was observed. Furthermore, more than 90% of cells were viable in the cultures exposed to 4 x 104 to 8 x 104 IU of SAE per ml, while almost all the MT-4 cells in the control culture had died by 10 days after HIV infection. The inhibitory effect of SAE on HIV replication was confirmed by plaque reduction assays. The 50% inhibitory dose of SAE was 9.5 x 103 IU/mi. Chondroitin sulfate A, dermatan sulfate, heparan sulfate, keratan polysulfate, and heparin also inhibited the RT of avian myeloblastosis virus. SAE immediately inhibited RT activity when added to an assay mixture after the start of the reaction.
In TLR2-activated microglia, hypothermia reduced, while hyperthermia increased, the early activation of NF-κB and the subsequent NF-κB-mediated production of TNF-α, IL-10, and NO in a time-dependent manner, suggesting that attenuation of these factors via suppression of NF-κB in microglia is one possible neuroprotective mechanism of therapeutic hypothermia. Moreover, temperature-dependent changes in microglial TNF-α production during the early phase and IL-10 and NO production during the late phase indicate that these factors might be useful as clinical markers to monitor hypothermia-related neuronal protection and hyperthermia-related neuronal injury.
Lowering temperature rapidly reduced p38 activation and the subsequent p38-regulated production of pro-inflammatory cytokines and NO in ATP-activated microglia, suggesting that attenuation of early phase inflammatory responses via suppression of p38 in microglia is one possible neuroprotective mechanism of therapeutic hypothermia. Temperature elevation increased TNF-α and NO production in these cells. These temperature-dependent changes imply that monitoring of TNF-α and NO in the cerebrospinal fluid during the early phase might be useful as biomarkers for responses to therapeutic hypothermia and hyperthermia.
Ancovenin, an inhibitor of angiotensin I converting enzyme isolated from the culture broth of a Streptomyces species, is a dialysable peptide composed of sixteen amino acid residues containing unusual amino acids such as threo-;3-methyllanthionine, meso-lanthionine, and dehydroalanine. * In the preliminary tests , the IC50 value of ancovenin to rat lung ACE is 8.5 x 10-8 M, while the values of captopril, MK-422, and potentiator C, a peptidyl inhibitor, are 1.4X10-1m, 3.5x10-1m, and 5.6x10-7M, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.