Although cell intercalation driven by non-canonical Wnt/planar cell polarity (PCP) pathway-dependent mediolateral cell polarity is important for notochord morphogenesis, it is likely that multiple mechanisms shape the notochord as it converges and extends. Here we show that the recessive short-tailed Ciona savignyi mutation chongmague (chm) has a novel defect in the formation of a morphological boundary around the developing notochord. chm notochord cells initiate intercalation normally, but then fail to maintain their polarized cell morphology and migrate inappropriately to become dispersed in the larval tail. This is unlike aimless (aim), a mutation in the PCP pathway component Prickle, which has a severe defect in early mediolateral intercalation but forms a robust notochord boundary. Positional cloning identifies chm as a mutation in the C. savignyi ortholog of the vertebrate alpha 3/4/5 family of laminins. Cs-lam␣3/4/5 is highly expressed in the developing notochord, and Cs-lam␣3/4/5 protein is specifically localized to the outer border of the notochord. Notochord convergence and extension, reduced but not absent in both chm and aim, are essentially abolished in the aim/aim; chm/chm double mutant, indicating that laminin-mediated boundary formation and PCPdependent mediolateral intercalation are each able to drive a remarkable degree of tail morphogenesis in the absence of the other. These mechanisms therefore initially act in parallel, but we also find that PCP signaling has an important later role in maintaining the perinotochordal/intranotochordal polarity of Cs-lam␣3/4/5 localization.
Medaka is an attractive model to study epimorphic regeneration. The fins have remarkable regenerative capacity and are replaced about 14 days after amputation. The formation of blastema, a mass of undifferentiated cells, is essential for regeneration; however, the molecular mechanisms are incompletely defined. To identify the genes required for fin regeneration, especially for blastema formation, we constructed cDNA libraries from fin regenerates at 3 days postamputation and 10 days postamputation. A total of 16,866 expression sequence tags (ESTs) were sequenced and subjected to BLASTX analysis. The result revealed that about 60% of them showed strong matches to previously identified proteins, and major signaling molecules related to development, including FGF, BMP, Wnt, Notch/Delta, and Ephrin/Eph signaling pathways were isolated. To identify novel genes that showed specific expression during fin regeneration, cDNA microarray was generated based on 2900 independent ESTs from each library which had no sequence similarity to known proteins. We obtained 6 candidate genes associated with blastema formation by gene expression pattern screening in competitive hybridization analyses and in situ hybridization. Olrfe16d23 and olrfe14k04 were expressed only in early regenerating stages when blastema formation was induced. The expression of olrf5n23, which encodes a novel signal peptide, was detected in wound epidermis throughout regeneration. Olrfe23l22, olrfe20n22, and olrfe24i02 were expressed notably in the blastema region. Our study has thus identified the gene expression profiles and some novel candidate genes to facilitate elucidation of the molecular mechanisms of fin regeneration.
The phenomenon of 'epimorphic regeneration', a complete reformation of lost tissues and organs from adult differentiated cells, has been fascinating many biologists for many years. While most vertebrate species including humans do not have a remarkable ability for regeneration, the lower vertebrates such as urodeles and fish have exceptionally high regeneration abilities. In particular, the teleost fish has a high ability to regenerate a variety of tissues and organs including scales, muscles, spinal cord and heart among vertebrate species. Hence, an understanding of the regeneration mechanism in teleosts will provide an essential knowledge base for rational approaches to tissue and organ regeneration in mammals. In the last decade, small teleost fish such as the zebrafish and medaka have emerged as powerful animal models in which a variety of developmental, genetic and molecular approaches are applicable. In addition, rapid progress in the development of genome resources such as expressed sequence tags and genome sequences has accelerated the speed of the molecular analysis of regeneration. This review summarizes the current status of our understanding of the cellular and molecular basis of regeneration, particularly that regarding fish fins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.