Probiotics exert numerous effects on human well-being. Here, heat-killed Lactobacillus plantarum BF-LP284 (H-Lp) was isolated as a potent immuno-modulator among 15 strains of lactobacilli in terms of TNF-α induction ability in peritoneal macrophages. In vitro TNF-α and IFN-γ induction in Peyer's patch (PP) cells was higher when incubated with H-Lp than with live L. plantarum BF-LP284 (L-Lp). Suppression of syngeneic Meth-A tumors in a murine model by oral administration of H-Lp was also greater than that of L-Lp and of controls. H-Lp stimulated IFN-γ production in spleen cells, which displayed inhibited tumor growth in Winn assays when treated with H-Lp. Moreover, H-Lp increased the ratio of CD3(+ )cells among peripheral blood mononuclear cells in Meth-A tumor-bearing mice, suggesting an H-Lp-mediated anti-tumor mechanism whereby immune cells that are activated by H-Lp in PP and acquire anti-tumor activity in the spleen migrate to tumor sites through lymphocyte homing to inhibit tumor growth.
Periodontal disease develops as a result of oral microbiota in dysbiosis, followed by the growth of periodontal pathogens such as Porphyromonas gingivalis and Prevotella intermedia. In case of acute symptoms, antibacterial agents and disinfectants are administered, however the appearance of drug-resistant bacteria and allergies cause problems. In recent years, studies on the effects of probiotics have been conducted as an alternative therapy for periodontitis. However, the basic mechanism of the inhibitory effect of probiotic bacteria on periodontal disease has not been clearly elucidated. To clarify the antibacterial mechanism of probiotics against periodontal pathogens, we used Limosilactobacillus (Lactobacillus) fermentum ALAL020, which showed the strongest antibacterial activity against P. gingivalis and P. intermedia among 50 screened lactic acid bacteria strains. The antibacterial substances produced were identified and structurally analyzed. After neutralizing the MRS liquid culture supernatant of ALAL020 strain, the molecular weight (m/z) of the main antibacterial substance separated by gel filtration column chromatography and reverse phase HPLC was 226.131. This low molecular weight compound was analyzed by LC-MS and disclosed the composition formula C11H18O3N2, however the molecular structure remained unknown. Then, structural analysis by NMR revealed C11H18O3N2 as the cyclic dipeptide, “hexahydro-7-hydroxy-3- (2-methylpropyl) pyrrolo [1,2-a] pyrazine-1,4-dion cyclo (Hyp-Leu) “. Based on the results of this analysis, cyclo (Hyp-Leu) was chemically synthesized and the antibacterial activity against P. gingivalis and P. intermedia was measured. The minimum inhibitory concentration (MIC) was 2.5 g/L and the minimum bactericidal concentration (MBC) was shown to be less than 5 g/L. In addition, an in vitro epithelial tissue irritation test at 10 g/L showed no tissue toxicity. So far there are no reports of this peptide being produced by probiotic bacteria. Furthermore, antibacterial activity of this cyclic dipeptide against periodontal disease bacteria has not been confirmed. The results of this study might lead to a comprehensive understanding of the antibacterial mechanism against periodontal disease bacteria in future, and are considered applicable for the prevention of periodontal disease.
Supernates of thymic epithelial cell culture (STEC) strongly inhibit aggregation induced by addition of adenosine diphosphate (ADP: 1 microM) or thrombin (0.5 unit per ml) to washed platelet suspensions and accelerated the restoration from ADP-triggered aggregation. At the same time, STEC increased the level of platelet adenosine 3',5'-cyclic monophosphate (cyclic AMP) in a dose-dependent manner. Depending on the concentration used, thymosin fraction 5 increased the level of intracellular cyclic AMP ranging between 5 and 100 micrograms per ml, as well as inhibiting ADP-induced platelet aggregation. The activities of both STEC and thymosin fraction 5 were found to act exclusively on cyclic AMP phosphodiesterase activity in platelets. In contrast the supernates from Chang, HeLa, or HCC-M cells did not affect platelet aggregation induced by ADP, but slightly increased the cyclic AMP level (Chang, HeLa). Within 2 min after the treatment with STEC, more than 50% of the maximum inhibitory activity on platelet aggregation and increases in intracellular cyclic AMP were observed. These activities disappeared following STEC treatment with pronase E. STEC activity was found predominantly in the 1,000-50,000-dalton fractions. These activities were not altered when STEC was treated by adenosine deaminase. The level of prostaglandin E (PGE) derivatives in STEC was about two times that found in the control culture medium. These data suggest that the biological activity of STEC in the platelets might be attributed to thymosinlike polypeptides and PGE1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.