Depth Flow
InputSeparate learning Joint learning (Ours) Fig. 1: Joint learning v.s. separate learning. Single-view depth prediction and optical flow estimation are two highly correlated tasks. Existing work, however, often addresses these two tasks in isolation. In this paper, we propose a novel cross-task consistency loss to couple the training of these two problems using unlabeled monocular videos. Through enforcing the underlying geometric constraints, we show substantially improved results for both tasks.Abstract. We present an unsupervised learning framework for simultaneously training single-view depth prediction and optical flow estimation models using unlabeled video sequences. Existing unsupervised methods often exploit brightness constancy and spatial smoothness priors to train depth or flow models. In this paper, we propose to leverage geometric consistency as additional supervisory signals. Our core idea is that for rigid regions we can use the predicted scene depth and camera motion to synthesize 2D optical flow by backprojecting the induced 3D scene flow. The discrepancy between the rigid flow (from depth prediction and camera motion) and the estimated flow (from optical flow model) allows us to impose a cross-task consistency loss. While all the networks are jointly optimized during training, they can be applied independently at test time. Extensive experiments demonstrate that our depth and flow models compare favorably with state-of-the-art unsupervised methods.
We tackle the challenging problem of human-object interaction (HOI) detection. Existing methods either recognize the interaction of each human-object pair in isolation or perform joint inference based on complex appearance-based features. In this paper, we leverage an abstract spatial-semantic representation to describe each human-object pair and aggregate the contextual information of the scene via a dual relation graph (one human-centric and one object-centric). Our proposed dual relation graph effectively captures discriminative cues from the scene to resolve ambiguity from local predictions. Our model is conceptually simple and leads to favorable results compared to the state-of-the-art HOI detection algorithms on two large-scale benchmark datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.