Diffuse Intrinsic Pontine Glioma (DIPG) is a fatal childhood cancer. We performed a chemical screen in patient-derived DIPG cultures along with RNAseq analyses and integrated computational modeling to identify potentially effective therapeutic strategies. The multi-histone deacetylase inhibitor panobinostat demonstrated efficacy in vitro and in DIPG orthotopic xenograft models. Combination testing of panobinostat with histone demethylase inhibitor GSKJ4 revealed synergy. Together, these data suggest a promising therapeutic strategy for DIPG.
Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a type of long noncoding RNA. It is associated with metastasis and is a favorable prognostic factor for lung cancer. Recent studies have shown that MALAT1 plays an important role in other malignancies. But, little is known about the role of MALAT1 in glioma. In this study, quantitative reverse transcription PCR (qRT-PCR) was used to demonstrate that the expression of MALAT1 was lower than that in normal brain tissues. Stable RNA interference-mediated knockdown of MALAT1 in human glioma cell lines (U87 and U251) significantly promoted the invasion and proliferation of the glioma cells by in vitro assays. Conversely, overexpression of MALAT1 caused significant reduction in cell proliferation and invasion in vitro, and tumorigenicity in both subcutaneous and intracranial human glioma xenograft models. Furthermore, MALAT1-mediated tumor suppression in glioma cells may be via reduction of extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) signaling activity and expression of matrix metalloproteinase 2 (MMP2). In conclusion, overall data demonstrated the tumor-suppressive role of MALAT1 in glioma by attenuating ERK/MAPK-mediated growth and MMP2-mediated invasiveness.
BackgroundA better understanding of the molecular mechanism involving lncRNA-miRNA-mRNA network underlying glioma genesis is beneficial to the treatment of glioma. This study was designed to investigate the role of lncRNA NEAT1, miR-132 and SOX2 interaction in glioma.MethodsMicroarray analysis was conducted to identify the differentially expressed lncRNAs in glioma tissues. The expression levels of NEAT1, miR-132 and SOX2 were determined by qRT-PCR and western blot. Proliferation of glioma cells was detected by MTT assay, while migration and invasion were determined by transwell assay. The target relationships were predicted by miRcode algorithm, and confirmed by dual luciferase reporter gene assay.ResultsNEAT1 was up-regulated in glioma. Knockdown of NEAT1 inhibited glioma cells’ viability, migration and invasion. MiR-132 was down-regulated while SOX2 was up-regulated in glioma cells. NEAT1 negatively regulated the expression of miR-132 in glioma while miR-132 targeted SOX2 to down-regulate its expression.ConclusionNEAT1 promoted glioma development by promoting SOX2 expression through suppressing miR-132.Electronic supplementary materialThe online version of this article (10.1186/s12943-018-0849-2) contains supplementary material, which is available to authorized users.
Recent studies have identified a class of small non-coding RNA molecules, named microRNA (miRNA), that is dysregulated in malignant brain glioblastoma. Substantial data have indicated that miRNA-16 (miR-16) plays a significant role in tumors of various origins. This miRNA has been linked to various aspects of carcinogenesis, including cell apoptosis and migration. However, the molecular functions of miR-16 in gliomagenesis are largely unknown. We have shown that the expression of miR-16 in human brain glioma tissues was lower than in non-cancerous brain tissues, and that the expression of miR-16 decreased with increasing degrees of malignancy. Our data suggest that the expression of miR-16 and nuclear factor (NF)-κB1 was negatively correlated with glioma levels. MicroRNA-16 decreased glioma malignancy by downregulating NF-κB1 and MMP9, and led to suppressed invasiveness of human glioma cell lines SHG44, U87, and U373. Our results also indicated that upregulation of miR-16 promoted apoptosis by suppressing BCL2 expression. Finally, the upregulation of miR-16 in a nude mice model of human glioma resulted in significant suppression of glioma growth and invasiveness. Taken together, our experiments have validated the important role of miR-16 as a tumor suppressor gene in glioma growth and invasiveness, and revealed a novel mechanism of miR-16-mediated regulation in glioma growth and invasiveness through inhibition of BCL2 and the NF-κB1/MMP-9 signaling pathway. Therefore, our experiments suggest the possible future use of miR-16 as a therapeutic target in gliomas.
Malignant gliomas are the most common primary brain tumors, and the molecular mechanisms involving their progression and recurrence are still largely unclear. Substantial data indicate that the oncogene miR-494-3p is significantly elevated in gliomas, but the molecular functions of miR-494-3p in gliomagenesis are largely unknown. The present study aimed to explore the role of miR-494-3p and its molecular mechanism in human brain gliomas, malignant glioma cell lines, and cancer stem-like cells. The expression level of miR-494-3p in 48 human glioma issues and 8 normal brain tissues was determined using stem-loop real-time polymerase chain reaction (PCR). To study the function of miR-494-3p inhibitor in glioma cells, the miR-494-3p inhibitor lentivirus was used to transfect glioma cells. Transwell invasion system was used to estimate the effects of miR-494-3p inhibitor on the invasiveness of glioma cells. A mouse model was used to test the effect of miR-494-3p inhibitor on glioma proliferation and invasion in vivo. Results showed that the expression of miR-494-3p in human brain glioma tissues was higher than in normal brain tissues. Downregulated expression of miR-494-3p can inhibit the invasion and proliferation and promote apoptosis in glioma cells. Quantitative reverse transcription PCR and Western blotting analysis revealed that the expression of PTEN was increased after downexpression of miR-494-3p in glioma cells (U87 and U251). miR-494-3p inhibitor could prevent migration, invasion, proliferation, and promote apotosis in gliomas through PTEN/AKT pathway. Therefore, the study results have shown that miR-494-3p may act as a therapeutic target in gliomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.