Circular RNAs (circRNAs) are non-coding single-stranded covalently closed circular RNA, mainly produced by reverse splicing of exons of precursor mRNAs (pre-mRNAs). The characteristics of high abundance, strong specificity, and good stability of circRNAs have been discovered. A large number of studies have reported its various functions and mechanisms in biological events, such as the occurrence and development of cancer. In this review, we focus on the classification, characterization, biogenesis, functions of circRNAs, and the latest advances in cancer research. The development of circRNAs as biomarkers in cancer diagnosis and treatment also provides new ideas for studying circRNAs research.
Gastric cancer (GC) is a malignant cancer of the digestive tract and is a life-threatening disease worldwide. Ferroptosis is a newly discovered form of regulated cell death, which involves the accumulation of iron-dependent lipid peroxides. It has been found that ferroptosis plays an important regulatory role in the occurrence, development, drug resistance, and prognosis of GC. Non-coding RNAs (ncRNAs) play a critical role in the occurrence and progression of a variety of diseases including GC. In recent years, the role of ferroptosis and ferroptosis-related ncRNAs (miRNA, lncRNA, and circRNA) in the occurrence, development, drug resistance, and prognosis of GC has attracted more and more attention. Herein, we briefly summarize the roles and functions of ferroptosis and ferroptosis-related ncRNAs in GC tumorigenesis, development, and prognosis. We also prospected the future research direction and challenges of ferroptosis and ferroptosis-related ncRNAs in GC.
Gastric cancer is a common malignant tumor worldwide. N-methyl-N-nitro-N-nitroguanidine (MNNG) is one of the most important inducing factors of gastric cancer. Autophagy can affect the occurrence and development of gastric cancer, but the mechanism is not clear. Chemoprevention has been shown to be a rational and very promising approach to the prevention of gastric cancer. Hesperidin is a citrus flavone, an abundant polyphenol in citrus fruits and traditional Chinese medicine. It has an excellent phytochemistry that plays an intervention role in gastric cancer. However, it is unclear whether long-term exposure to MNNG will affect the occurrence of gastric cancer by regulating autophagy and whether hesperidin can play an intervention role in this process. In the present study, we demonstrated that long-term MNNG exposure inhibits autophagy in stomach tissues of rats, promotes the epithelial–mesenchymal transition (EMT) process and cell proliferation and suppresses the activity of the PI3K/AKT pathway. We further found that after rapamycin-activated autophagy, long-term MNNG exposure promoted cell proliferation and EMT were inhibited. In addition, hesperidin promotes autophagy and the activity of the PI3K/AKT pathway, as well as the suppression of proliferation and EMT in the stomach tissues of rats. Our findings indicate that hesperidin reverses MNNG-induced gastric cancer by activating autophagy and the PI3K/AKT pathway, which may provide a new basis for the early prevention and treatment of MNNG-induced gastric cancer.
Gastric cancer (GC) is one of the most common malignant cancers that seriously affect human health. Autophagy is a highly conserved self-defense mechanism found to plays an important role in the occurrence, progression, drug resistance, and prognosis of GC. Noncoding RNAs (ncRNAs) play a critical role in the occurrence and development of a variety of diseases including GC. In recent years, increasing attention has been given to research on autophagy-related ncRNAs, such as miRNA, lncRNA, and circRNA in GC. Herein, we briefly summarize the roles, functions, and the research progress of autophagy and autophagy-related ncRNAs in GC with a focus on the potential application in GC tumorigenesis, development, prognosis, and drug resistance. We also discussed prospects of clinical application, future research direction, and challenges in future research of autophagy-related ncRNAs.
Gastric cancer (GC) is the fourth most common malignant cancer and is a life-threatening disease worldwide. Phytochemicals have been shown to be a rational, safe, non-toxic, and very promising approach to the prevention and treatment of cancer. It has been found that phytochemicals have protective effects against GC through inhibiting cell proliferation, inducing apoptosis and autophagy, suppressing cell invasion and migration, anti-angiogenesis, inhibit Helicobacter pylori infection, regulating the microenvironment. In recent years, the role of phytochemicals in the occurrence, development, drug resistance and prognosis of GC has attracted more and more attention. In order to better understand the relationship between phytochemicals and gastric cancer, we briefly summarize the roles and functions of phytochemicals in GC tumorigenesis, development and prognosis. This review will probably help guide the public to prevent the occurrence and development of GC through phytochemicals, and develop functional foods or drugs for the prevention and treatment of gastric cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.