In the last decade, the nonstationary properties of channel models have attracted more and more attention for many scenarios, that is, vehicle-to-vehicle (V2V), mobile-to-mobile (M2M), and high-speed train (HST). However, little research has been done on the real-physical channel model. In this paper, we propose a generalized three-dimensional (3D) nonstationary channel model, in which the scatterers are assumed to be distributed around the transmitter (Tx) and receiver (Rx) on a two-sphere model. By employing the von Mises-Fisher distribution, the mean values of the azimuth angle of departure (AAoD) and elevation angle of departure (EAoD) and the azimuth angle of arrival (AAoA) and elevation angle of arrival (EAoA) are tracked by time-variant (TV) Brownian Markov (BM) motion paths, which ensure the nonstationarity of the proposed channel model. Moreover, the TV autocorrelation function (ACF) and Doppler power spectrum density (DPSD) of the proposed nonstationary channel model are calculated by using signal processing tools, for example, fast Fourier transform (FFT) and short-time Fourier transform (STFT). In addition, the simulation results show that the TV scatterer distribution results in a nonstationary nonisotropic channel model, and the proposed model can be employed to simulate the 3D nonstationary channel model.
We examine the relationship between covariant and canonical (Ashtekar/Rovelli/Smolin) loop variables in the context of BF type topological field theories in 2+1 and 3+1 dimensions, with respective gauge groups SO(2,1) and SO(3,1). The latter model can be considered as the simplest topological gravity theory in 3+1 dimensions. We carry out the canonical quantization of this model in both the connection and loop representations, for the two spatial topologies T 3 and S 2 × S 1 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.