Core–shell tecto dendrimers formed via supramolecular assembly enable co-delivery of microRNA 21 inhibitor and doxorubicin for enhanced anticancer therapy applications.
Detection of circulating tumor cells (CTCs) in peripheral blood is of paramount significance for early-stage cancer diagnosis, estimation of cancer development, and individualized cancer therapy. Herein, we report the development of hyaluronic acid (HA)-functionalized electrospun chitosan nanofiber (CNF)-integrated microfludic platform for highly specific capture and nondestructive release of CTCs. First, electrospun CNFs were formed and modified with zwitterion of carboxyl betaine acrylamide (CBAA) via Michael addition reaction and then targeting ligand HA through a disulfide bond. We show that the formed nanofibers still maintain the smooth fibrous morphology after sequential surface modifications, have a good hemocompatibility, and exhibit an excellent antifouling property due to the CBAA modification. After being embedded within a microfluidic chip, the fibrous mat can capture cancer cells (A549, a human lung cancer cell line) with an efficiency of 91% at a flow rate of 1.0 mL/h. Additionally, intact release of cancer cells is able to be achieved after treatment with glutathione for 40 min to have a release efficiency of 90%. Clinical applications show that 9 of 10 nonsmall-cell lung cancer patients and 5 of 5 breast cancer patients are diagnosed to have CTCs (1 to 18 CTCs per mL of blood). Our results suggest that the developed microfluidic system integrated with functionalized CNF mats may be employed for effective CTCs capture for clinical diagnosis of cancer.
Electrospun nanofibers hold a great potential in biomedical applications due to their advantages of large specific surface area, good biocompatibility, easy fabrication and surface modification. In particular, organic/inorganic hybrid nanofibers exhibit enhanced mechanical properties and long-term sustained release or controlled release profile of encapsulated drugs, which enables hybrid nanofibers to serve as desired platform for drug delivery and tissue engineering applications. This review summarizes the recent progresses in the preparation, performances and applications of hybrid nanofibers as drug delivery vectors for antibacterial and antitumor therapy, and as nanofibrous scaffolds for bone tissue engineering or other types of tissue engineering applications. Nanofibers doped with various types of inorganic nanoparticles (e.g., halloysite, laponite ® , nano-hydroxyapatite, attapulgite, carbon nanotubes, and graphene, etc.) are introduced and summarized in detail. Future perspectives are also briefly discussed.
Graphic AbstractKeywords Electrospun nanofibers · Hybrid nanofibers · Drug delivery · Tissue engineering
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.