Background Plasmodium vivax remains the predominant species at the China–Myanmar border, imposing a major challenge to the recent gains in regional malaria elimination. To closely supervise the emerging of drug resistance in this area, we surveyed the variations in genes potentially correlated with drug resistance in P. vivax parasite and the possible drug selection with time. Methods A total of 235 P. vivax samples were collected from patients suffering uncomplicated malaria at Yingjiang, Tengchong, and Longling counties, and Nabang port in China, Yunnan province, and Laiza sub-township in Myanmar, from 2008 to 2017. Five potential drug resistance genes were amplified utilizing nested-PCR and analyzed, including pvdhfr, pvdhps, pvmdr1, pvcrt-o, and pvk12. The Pearson’s Chi-squared test or Fisher’s exact test were applied to determine the statistical frequency differences of mutations between categorical data. Results The pvdhfr F57I/L, S58R, T61M and S117T/N presented in 40.6%, 56.7%, 40.1%, and 56.0% of the sequenced P. vivax isolates, and these mutations significantly decreased with years. The haplotype formed by these quadruple mutations predominated in Yingjiang, Tengchong, Longling and Nabang. While a mutation H99S/R (56.6%) dominated in Laiza and increased with time. In pvdhps, the A383G prevailed in 69.2% of the samples, which remained the most prevalent haplotype. However, a significant decrease of its occurrence was also noticed over the time. The S382A/C and A553G existed in 8.4% and 30.8% of the isolates, respectively. In pvmdr1, the mutation Y976F occurred at a low frequency in 5/232 (2.2%), while T958M was fixed and F1076L was approaching fixed (72.4%). The K10 insertion was detected at an occurrence of 33.2% in pvcrt-o, whereas there was no significant difference among the sites or over the time. No mutation was identified in pvk12. Conclusions Mutations related with resistance to antifolate drugs are prevalent in this area, while their frequencies decrease significantly with time, suggestive of increased susceptibility of P. vivax parasite to antifolate drugs. Resistance to chloroquine (CQ) is possibly emerging. However, since the molecular mechanisms underneath CQ resistance is yet to be better understood, close supervision of clinical drug efficiency and continuous function investigation is urgently needed to alarm drug resistance. Graphical abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.