BackgroundChondrocyte dysfunction and apoptosis are 2 major features during the progression of osteoarthritis. Catalpol, an iridoid glycoside isolated from the root of Rehmannia, is a valuable medication with anti-inflammatory, anti-oxidative, and anti-apoptotic effects in various diseases. However, whether catalpol protects against osteoarthritis has not been investigated.Material/MethodsTo assess the role of catalpol in osteoarthritis and the potential mechanism of action, chondrocytes were treated with interleukin (IL)-1β and various concentrations of catalpol. Catabolic metabolism, apoptotic level and relative signaling pathway were measured by western blot, real-time polymerase chain reaction and immunofluorescence staining. Meanwhile, we assess the cartilage degeneration in an experimental rat model using Safranin O fast green staining and cartilage was graded according to the Osteoarthritis Research Society International (OARSI) system.ResultsThe results showed that catalpol prevented chondrocyte apoptotic level triggered by IL-1β, suppressed the release of catabolic enzymes, and inhibited the degradation of extracellular matrix induced by IL-1β. Catalpol also inhibited the nuclear factor kappa B (NF-κB) pathway, reduced the production of inflammatory cytokines (IL-6, tumor necrosis factor-α) in IL-1β-treated chondrocytes, and partially reversed cartilage degeneration in the knee joint in animal model of osteoarthritis.ConclusionsOur work suggested that catalpol treatment attenuates IL-1β-induced inflammatory response and catabolism in rat chondrocytes by inhibiting the NF-κB pathway, suggesting the therapeutic potential of catalpol for the treatment of osteoarthritis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.