Interleukins-6 (IL-6)/GP130 signaling pathway represents a promising target for cancer therapy due to its critical role in survival and progression of multiple types of cancer. We have identified Bazedoxifene, a Food and Drug Administration (FDA)-approved drug used for the prevention of postmenopausal osteoporosis, with novel function as inhibitor of IL-6/GP130 interaction. In this study, we investigate the effect of Bazedoxifene in rhabdomyosarcoma and evaluate whether inhibiting IL-6/GP130 signaling is an effective therapeutic strategy for rhabdomyosarcoma. The inhibitory effect of Bazedoxifene was assessed in rhabdomyosarcoma cell lines in vitro and RH30 xenograft model was used to further examine the suppressive efficacy of Bazedoxifene on tumor growth in vivo. Rhabdomyosarcoma cells showed their sensitivity to GP130 inhibition using gene knockdown or neutralized antibody, suggesting IL-6/GP130 as therapeutic target in rhabdomyosarcoma cells. Bazedoxifene decreased the signal transducer and activator of transcription3 (STAT3) phosphorylation, blocked STAT3 DNA binding, and down-regulated the expression of STAT3 downstream genes. Bazedoxifene also induced cell apoptosis, reduced cell viability, and inhibited colony formation in rhabdomyosarcoma cells. The inhibition of colony formation, STAT3 phosphorylation, or cell viability following Bazedoxifene treatment was partially reversed by addition of excess IL-6 or overexpression of constitutive STAT3, respectively, supporting Bazedoxifene acted through IL-6/GP130 signaling. In addition, Bazedoxifene repressed cell invasion and angiogenesis in vitro. Furthermore, oral administration of Bazedoxifene significantly suppressed tumor growth and expression of STAT3 phosphorylation in nude mice bearing established human rhabdomyosarcoma xenograft. Taken together, these findings validate IL-6/GP130 signaling as therapeutic target in rhabdomyosarcoma and provide first evidence that Bazedoxifene may serve as a novel promising drug targeting IL-6/GP130 for treatment of rhabdomyosarcoma.
Significance The spindle checkpoint is required for proper chromosome segregation. Mitotic arrest deficiency 2 (Mad2), a component of the spindle checkpoint, is overexpressed in many cancer cells. This phenotype can be used to specifically kill Mad2-overexpressing tumor cells. Because the spindle checkpoint pathway is highly conserved between yeast and humans, we performed a screen to identify mutants in which Mad2 overexpression kills yeast cells. The screen revealed that Mad2 overexpression induced lethality in 13 gene deletions. Among the human homologs of the 13 candidate genes, a gene encoding protein phosphatase 2 (PP2A) significantly inhibited the growth of Mad2-overexpressing tumor cells. These results indicate that PP2A can be a specific therapeutic target in Mad2-overexpressing tumors.
We recently reported that the intronic splice-site mutation IVS3-8G>A of CHRNA1 that encodes the muscle nicotinic acetylcholine receptor alpha subunit disrupts binding of a splicing repressor, hnRNP H. This, in turn, results in exclusive inclusion of the downstream exon P3A. The P3A(+) transcript encodes a non-functional alpha subunit that comprises 50% of the transcripts in normal human skeletal muscle, but its functional significance remains undetermined. In an effort to search for a potential therapy, we screened off-label effects of 960 bioactive chemical compounds and found that tannic acid ameliorates the aberrant splicing due to IVS3-8G>A but without altering the expression of hnRNP H. Therefore, we searched for another splicing trans-factor. We found that the polypyrimidine tract binding protein (PTB) binds close to the 3' end of CHRNA1 intron 3, that PTB induces skipping of exon P3A and that tannic acid increases the expression of PTB in a dose-dependent manner. Deletion assays of the PTB promoter region revealed that the tannic acid-responsive element is between positions -232 and -74 from the translation initiation site. These observations open the door to the discovery of novel therapies based on PTB overexpression and to detecting possible untoward effects of the overexpression.
BackgroundChondrocyte dysfunction and apoptosis are 2 major features during the progression of osteoarthritis. Catalpol, an iridoid glycoside isolated from the root of Rehmannia, is a valuable medication with anti-inflammatory, anti-oxidative, and anti-apoptotic effects in various diseases. However, whether catalpol protects against osteoarthritis has not been investigated.Material/MethodsTo assess the role of catalpol in osteoarthritis and the potential mechanism of action, chondrocytes were treated with interleukin (IL)-1β and various concentrations of catalpol. Catabolic metabolism, apoptotic level and relative signaling pathway were measured by western blot, real-time polymerase chain reaction and immunofluorescence staining. Meanwhile, we assess the cartilage degeneration in an experimental rat model using Safranin O fast green staining and cartilage was graded according to the Osteoarthritis Research Society International (OARSI) system.ResultsThe results showed that catalpol prevented chondrocyte apoptotic level triggered by IL-1β, suppressed the release of catabolic enzymes, and inhibited the degradation of extracellular matrix induced by IL-1β. Catalpol also inhibited the nuclear factor kappa B (NF-κB) pathway, reduced the production of inflammatory cytokines (IL-6, tumor necrosis factor-α) in IL-1β-treated chondrocytes, and partially reversed cartilage degeneration in the knee joint in animal model of osteoarthritis.ConclusionsOur work suggested that catalpol treatment attenuates IL-1β-induced inflammatory response and catabolism in rat chondrocytes by inhibiting the NF-κB pathway, suggesting the therapeutic potential of catalpol for the treatment of osteoarthritis.
Background Large segmental bone defects can be repaired using the Masquelet technique in conjunction with autologous cancellous bone (ACB). However, ACB harvesting is severely restricted. α-calcium sulfate hemihydrate (α-CSH) is an outstanding bone substitute due to its easy availability, excellent biocompatibility, biodegradability, and osteoconductivity. However, the resorption rate of α-CSH is too fast to match the rate of new bone formation. The objective of this study was to investigate the bone repair capacity of the Masquelet technique in conjunction with isolated α-CSH or an α-CSH/ACB mix in a rabbit critical-sized defect model. Methods The rabbits ( n = 28) were randomized into four groups: sham, isolated α-CSH, α-CSH/ACB mix, and isolated ACB group. A 15-mm critical-sized defect was established in the left radius, followed by filling with polymethyl methacrylate spacer. Six weeks after the first operation, the spacers were removed and the membranous tubes were grafted with isolated α-CSH, isolated ACB, α-CSH/ACB mix, or none. Twelve weeks later, the outcomes were evaluated by manual assessment, radiography, and spiral-CT. The histopathological and morphological changes were examined by H&E staining. The levels of alkaline phosphatase and osteocalcin were analyzed by immunohistochemistry and immunofluorescence staining. Results Our results suggest that the bone repair capacity of the α-CSH/ACB mix group was similar to the isolated ACB group, while the isolated α-CSH group was significantly decreased compared to the isolated ACB group. Conclusion These results highlighted a promising strategy in the healing of large segmental bone defect with the Masquelet technique in conjunction with an α-CSH/ACB mix (1:1, w / w ) as they possessed the combined effects of sufficient supply and low resorption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.