Hydrogels have outstanding research and application prospects in the biomedical field. Among them, the design and preparation of biomedical hydrogels with deoxyribonucleic acid (DNA) as building blocks have attracted increasing research interest. DNA-based hydrogel not only has the skeleton function of hydrogel, but also retains its biological functions, including its excellent selection specificity, structural designability, precise molecular recognition ability, outstanding biocompatibility, and so on. It has shown important application prospects in the biomedical field, such as drug delivery, biosensing, and tissue engineering. In recent years, researchers have made full use of the characteristics of DNA molecules and constructed various pure DNA-based hydrogels with excellent properties through various crosslinking methods. Moreover, via introducing functional molecules or elements, or combining with other functional materials, a variety of multifunctional DNA-based hybrid hydrogels have also been constructed, which expand the breadth and depth of their applications. Here, we described the recent development trend in the area of DNA-based hydrogels and highlighted various preparation methods of DNA-based hydrogels. Representative biomedical applications are also exemplified to show the high performance of DNA-based hydrogels. Meanwhile, the existing problems and prospects are also summarized. This review provided references for the further development of DNA-based hydrogels.
Natural small molecular drugs with excellent biocompatibility, diverse pharmacological activities, and wide sources play an increasingly important role in the development of new drug and disease treatment. In recent years, the utilization of paclitaxel, camptothecin, rhein, curcumin, and other natural small molecular drugs with unique rigid backbone structures and modifiable multiple sites as building blocks to form gels by self-assembly has attracted widespread attention. The obtained low-molecular-weight supramolecular gel not only retains the general characteristics of the gel but also overcomes the shortcomings of natural drugs, such as poor water solubility and low bioavailability. It has the advantages of high drug loading, low toxicity, and outstanding stimulus responsiveness, which is widely used in biomedical fields. Here, we provided a comprehensive review of natural-drugs-based low-molecular-weight supramolecular gels reported in recent years and summarized their assembly mechanism, gel structure, gel properties, and potential applications. It is expected to provide a reference for further research of natural-drugs-based supramolecular gels.
Thermosensitive hydrogel scaffolds have attracted particular attention in three-dimensional (3D) cell culture. It is very necessary to develop a type of thermosensitive hydrogel material with low shrinkage, and excellent biocompatibility and biodegradability. Here, five types of thermosensitive microgels with different volume phase transition temperature (VPTT) or particle sizes were first synthesized using 2-methyl-2-propenoic acid-2-(2-methoxyethoxy) ethyl ester (MEO2MA) and oligoethylene glycol methyl ether methacrylate (OEGMA) as thermosensitive monomers by free radical polymerization. Their VPTT and particle sizes were investigated by a nanometer particle size meter and an ultraviolet spectrophotometer. The feasibility of using these P(OEGMA-co-MEO2MA) microgels to construct thermosensitive hydrogel by means of the thermal induction method is discussed for the first time. The prepared thermosensitive hydrogel with the optimum performance was screened for in situ embedding and three-dimensional (3D) culture of MCF-7 breast cancer cells. The experimental results of AO/EB and MTT methods indicate that the pioneering scaffold material has prominent biocompatibility, and cells grow rapidly in the 3D scaffold and maintain high proliferative capacity. At the same time, there is also a tendency to aggregate to form multicellular spheres. Therefore, this original P(OEGMA-co-MEO2MA) thermosensitive hydrogel can serve as a highly biocompatible and easily functionalized 3D cell culture platform with great potential in the biomedical area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.