Transparent novel glass-ceramics containing Sr 2 YbF 7 :Er 3+ nanocrystals were successfully fabricated by melt-quenching technique. Their structural and up-conversion luminescent properties were systemically investigated by XRD, HRTEM, and a series of spectroscopy methods. The temperature-dependent upconversion spectra prove that 2 H 11/2 and 4 S 3/2 levels of Er 3+ are thermally coupled energy levels (TCEL). Consequently, the 2
Luminescent properties of Sb(3+)/Mn(2+) co-doped borosilicate glasses containing no rare earth ions were systematically investigated through absorption, excitation, emission spectra, and decay curves. Upon 250-340 nm light excitation, the glasses exhibit broad blue emission at 400 nm (Sb(3+)) and red emission at 615 nm (Mn(2+)). The varied emitted color from blue through white and eventually to red can be obtained by properly tuning the content of Mn(2+) ions due to energy transfer from Sb(3+) to Mn(2+). Our investigation shows that Sb(3+)/Mn(2+) co-doped glasses may provide a new platform to design and fabricate luminescent materials for UV LED chips in the future.
The luminescent properties of novel Cu⁺, Sm³⁺ single- and co-doped borosilicate glasses were systematically investigated by absorption, excitation, emission spectra and decay curves. Cu⁺ single-doped glasses emit broad luminescence band covering all the visible range. And their peaks shift to blue with decreasing excitation wavelength from 330 to 280 nm. Cu⁺, Sm³⁺ co-doped samples generate the varied hues from blue white to pure white and eventually to yellow white due to an efficient energy transfer from Cu⁺ to Sm³⁺. Our research indicates the potential application of Cu⁺, Sm³⁺ co-doped borosilicate glasses as converting phosphors for white LEDs pumped by UV LED chips.
Glass containing optically active nanoparticles have been manufactured for centuries. However, only in the early 1900s, the invention of ultramicroscope and development of Mie theory paved the way to discovering the occurrence of nanoparticles in glass and their special role in imparting unique optical properties to glass. This groundbreaking insight inspired scientists to extensively research such nanoparticles‐in‐glass hybrid optical materials, which led to a series of fundamental breakthroughs (e.g., invention of glass ceramics, discovery of quantum dots) and commercial successes (e.g., photosensitive glass, photochromic glass, dichromic polarizer). Over the past decades, a new wave of research in this area has been initiated by opportunities of incorporating a large variety of synthetic nanoparticles in glass, which promises the development of advanced functional devices for lighting, display, smart window, data storage, and sensing applications. Recent development of various approaches of fabricating nanoparticles‐in‐glass hybrid optical materials and postmodifying nanoparticles that are embedded in glass is reviewed. The state‐of‐the‐art techniques relevant to controlling the dispersion, distribution, orientation, and nanostructure of nanoparticles in glass, as well as manipulating the macroscopic performance of the hybrid materials are discussed. Examples of applications with promising pathway to commercially viable devices based on hybrid optical materials are outlined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.