PurposeOne of the most challenging aspects of breast carcinoma chemotherapy is the rapid acquirement of drug resistance. Improving the sensitivity to chemotherapeutic drugs is very important for successful treatment. Mus81 plays an important role in maintaining the stability of the genome and DNA repair. However, recent studies suggested that Mus81 expression levels correlate well with resistance to DNA-damaging drugs. The present study aimed to investigate the role of Mus81 on the chemosensitivity of breast carcinoma cells in response to 5-fluorouracil (5-FU), a chemotherapeutic drug that is widely used for treatment of breast malignancies.MethodsThe expression of Mus81 in MCF-7 and T47D cells was suppressed by small interfering RNA (siRNA). mRNA and protein levels of Mus81 were analyzed by quantitative real-time polymerase chain reaction and Western blot. Cell viability and colony survival were determined by Cell Counting Kit-8 and plate colony formation assay, respectively. Cell cycle and apoptosis were detected by flow cytometry.Results5-FU inhibited the cell viability of MCF-7 and T47D cells in a concentration-dependent manner. We found that the Mus81-silenced MCF-7 and T47D cells exhibited decreased cell viability and clonogenic survival, but increased G2 accumulation, in response to 5-FU. In addition, Mus81 deficiency resulted in increased apoptosis and p53 expression in MCF-7 after 5-FU treatment. However, Mus81 deficiency did not affect the apoptosis of T47D cells with 5-FU.ConclusionTaken together, our data suggest that Mus81 inhibition significantly increased the chemosensitivity of MCF-7 and T47D cells in response to 5-FU. Thus, Mus81 siRNA is potentially a useful adjuvant strategy for breast cancer chemotherapy.
Photobiomodulation at a wavelength of 670 nm has been shown to be effective in preventing photoreceptor cell death in the retina. We treated Sprague-Dawley (SD) rats with varying doses of 670 nm light (9; 18; 36; 90 J/cm2) before exposing them to different intensities of damaging white light (750; 1000; 1500 lux). 670 nm light exhibited a biphasic response in its amelioration of cell death in light-induced degenerationin vivo. Lower light damage intensities required lower doses of 670 nm light to reduce TUNEL cell death. At higher damage intensities, the highest dose of 670 nm light showed protection.In vitro, the Seahorse XFe96 Extracellular Flux Analyzer revealed that 670 nm light directly influences mitochondrial metabolism by increasing the spare respiratory capacity of mitochondria in 661 W photoreceptor-like cells in light damaged conditions. Our findings further support the use of 670 nm light as an effective treatment against retinal degeneration as well as shedding light on the mechanism of protection through the increase of the mitochondrial spare respiratory capacity.
Chemotherapy is a notable method for the treatment of breast cancer. Numerous genes associated with the sensitivity of cancer to chemotherapy have been found. In recent years, evidence has suggested that a particular structure termed Holliday junction (HJ) plays a crucial role in cancer chemosensitivity. Targeting HJ resolvases, such as structure-specific endonuclease subunit SLX4 (Slx4) and MUS81 structure-specific endonuclease subunit (Mus81), significantly increases the chemosensitivity of tumor cells. Flap endonuclease GEN homolog 1 (GEN1) is a HJ resolvase that belongs to the Rad2/xeroderma pigmentosum complementation group G nuclease family. Whether GEN1 affects the chemosensitivity of tumor cells in a similar manner to Slx4 and Mus81 remains unknown. The aim of the present study was to determine the effect of GEN1 interference on the chemosensitivity of breast cancer cell lines. The investigation of the function of GEN1 was performed using MCF-7 and SKBR3 cells. Short hairpin RNA was used to suppress the expression of GEN1, and western blot analysis and reverse transcription-quantitative polymerase chain reaction were used to detect gene expression. In addition, a cell counting kit-8 assay was performed to detect the viability of cells and flow cytometry was performed to test apoptosis levels. Suppression of GEN1 in SKBR3 cells effectively increased the sensitivity to the chemotherapeutic drug 5-fluorouracil (5-FU), while MCF-7 cells showed no significant change in sensitivity following GEN1 suppression. However, when GEN1 was targeted in addition to Mus81, the MCF-7 cells also demonstrated a significantly increased sensitivity to 5-FU. In addition, when the level of Mus81 was low, GEN1 expression was increased under a low concentration of 5-FU. The present results suggest that GEN1 may play different roles in different breast cancer cell lines. The function of GEN1 may be affected by the level of Mus81 in the cell line. In addition, GEN1 interference may improve the sensitivity to chemotherapy induced by targeting Mus81 alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.