High temporal and spatial resolutions are the key advantages of the global navigation satellites system-reflectometry (GNSS-R) technique, while low precision and instabilities constrain its development. Compared with conventional Ku/C band nadir-looking radar altimetry, the precision of GNSS-R code-level altimetry is restricted by the smaller bandwidth and the lower transmitted power of the signals. Fortunately, modernized GNSS broadcast new open-available ranging codes with wider bandwidth. The Chinese BDS-3 system was built on 31 July 2020; its inclined geostationary orbit and medium circular orbit satellites provide B1C and B2a public navigation service signals in the two frequency bands of B1 and B2. In order to investigate their performance on GNSS-R code-level altimetry, a coastal experiment was conducted on 5 November 2020 at a trestle of Weihai in the Shandong province of China. The raw intermediate frequency data with a 62 MHz sampling rate were collected and post-processed to solve the sea surface height every second continuously for over eight hours. The precisions were evaluated using the measurements from a 26 GHz radar altimeter mounted on the same trestle near our GNSS-R setup. The results show that a centimeter-level accuracy of GNSS-R altimetry—based on B1C code after the application of the moving average—can be achieved, while for B2a code, the accuracy is about 10 to 20 cm.
Global navigation satellite system-reflectometry (GNSS-R) has great potential to be a novel technique for altimetry, which can be used to derive sea surface heights (SSH). Shipborne altimetry is an important method to measure local SSH with high spatial resolution. In order to test the feasibility of shipborne dual-antenna GNSS-R reflector height retrieval, we developed a GNSS-R receiver system and performed experiments on a research vessel. In this study, direct and reflected GPS/BDS signals were collected using the same setup, and processed to estimate the reflector heights on the basis of path-delay measurements. A strategy of obtaining the GPS/BDS code-level path delay based on 10-ms coherent integration waveforms was adopted. We analyzed the relationship between the path-delay error and the error of the estimated reflector height, and we pointed out that the error in the path delay was amplified when the satellite elevation was low. We also performed reflector height retrieval based on BDS-3 signals for the first time. We evaluated the precisions of the BDS-R and GPS-R derived reflector heights with 30°and 50°cut-off elevations. The results show that the standard deviation of solutions at different cases is around 1.0 m and precisions are slightly better for a 50°cut-off angle compared with a 30°cut-off angle. In general, the mean values of different cases are close, with differences of several centimeters for the experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.