Broader contextCarbon foam is a three-dimensional (3D) porous carbon material with an interconnected network architecture. It is usually prepared by the carbonization/pyrolysis of foamed polymers. Recently, ultrathin and exible energy storage devices have attracted much attention to meet
Electrospun blend-polyimide (blend-PI) nanofibers with high tensile strength and toughness are highlighted in this article. The blend-PI nanofibers were prepared by electrospinning the binary blend of rigid and flexible polyamic acids, followed by thermal imidization. The method is simple and can be extended to other kinds of polyamic acids. The morphologies and structures of the blend-PI nanofibers were investigated by scanning electron microscopy (SEM) and wide-angle X-ray diffraction (XRD). The mechanical properties, thermal properties and miscibility of the blend-PI nanofibers were studied by a tensile test, thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA). The mechanical properties of the blend-PI nanofibers, including tensile strength, modulus, elongation at break and toughness, could be well-tuned by modifying the molar ratio of the rigid component (B-PI) and the flexible component (O-PI). The blend-PI nanofibers with B-PI/O-PI molar ratio of 4/6 had an ultra-high strength of 1.3 GPa with an excellent toughness of 82 J g À1 . All the blend-PI nanofibers showed thermal stability to above 500 C. The presence of only one glass transition temperature (T g ) suggested the good miscibility of the binary PIs in the blend-PI nanofibers. This study would provide completely new opportunities for modifying the properties of electrospun PI nanofibers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.