Degree of luminal stenosis is generally considered to be an important indicator for judging the risk of atherosclerosis burden. However, patients with the same or similar degree of stenosis may have significant differences in plaque morphology and biomechanical factors. This study investigated three patients with carotid atherosclerosis within a similar range of stenosis. Using our developed fluid–structure interaction (FSI) modelling method, this study analyzed and compared the morphological and biomechanical parameters of the three patients. Although their degrees of carotid stenosis were similar, the plaque components showed a significant difference. The distribution range of time-averaged wall shear stress (TAWSS) of patient 2 was wider than that of patient 1 and patient 3. Patient 2 also had a much smaller plaque stress compared to the other two patients. There were significant differences in TAWSS and plaque stresses among three patients. This study suggests that plaque vulnerability is not determined by a single morphological factor, but rather by the combined structure. It is necessary to transform the morphological assessment into a structural assessment of the risk of plaque rupture.
Background: Carotid atherosclerosis is one of the main underlying inducements of stroke, which is a leading cause of disability. The morphological feature and biomechanical environment have been found to play important roles in atherosclerotic plaque progression. However, the biomechanics in each patient’s blood vessel is complicated and unique. Method: To analyse the biomechanical risk of the patient-specific carotid stenosis, this study used the fluid-structure interaction (FSI) computational biomechanical model. This model coupled both structural and hemodynamic analysis. Two patients with carotid stenosis planned for carotid endarterectomy were included in this study. The 3D models of carotid bifurcation were reconstructed using our in-house-developed protocol based on multisequence magnetic resonance imaging (MRI) data. Patient-specific flow and pressure waveforms were used in the computational analysis. Multiple biomechanical risk factors including structural and hemodynamic stresses were employed in post-processing to assess the plaque vulnerability. Results: Significant difference in morphological and biomechanical conditions between 2 patients was observed. Patient I had a large lipid core and serve stenosis at carotid bulb. The stenosis changed the cross-sectional shape of the lumen. The blood flow pattern changed consequently and led to a complex biomechanical environment. The FSI results suggested a potential plaque progression may lead to a high-risk plaque, if no proper treatment was performed. The patient II had significant tandem stenosis at both common and internal carotid artery (CCA and ICA). From the results of biomechanical factors, both stenoses had a high potential of plaque progression. Especially for the plaque at ICA branch, the current 2 small plaques might further enlarge and merge as a large vulnerable plaque. The risk of plaque rupture would also increase. Conclusions: Computational biomechanical analysis is a useful tool to provide the biomechanical risk factors to help clinicians assess and predict the patient-specific plaque vulnerability. The FSI computational model coupling the structural and hemodynamic computational analysis, better replicates the in vivo biomechanical condition, which can provide multiple structural and flow-based risk factors to assess plaque vulnerability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.