BackgroundEmerging evidence has shown that dysregulation function of long non-coding RNAs (lncRNAs) implicated in gastric cancer (GC). However, the role of the differentially expressed lncRNAs in GC has not fully explained.MethodsLncRNA expression profiles were determined by lncRNA microarray in five pairs of normal and GC tissues, further validated in another 75 paired tissues by quantitative real-time PCR (qRT-PCR). Overexpression of lncRNA MT1JP was conducted to assess the effect of MT1JP in vitro and in vivo. The biological functions were demonstrated by luciferase reporter assay, western blotting and rescue experiments.ResultsLncRNA MT1JP was significantly lower in GC tissues than adjacent normal tissues, and higher MT1JP was remarkably related to lymph node metastasis and advance stage. Besides, GC patients with higher MT1JP expression had a well survival. Functionally, overexpression of lncRNA MT1JP inhibited cell proliferation, migration, invasion and promoted cell apoptosis in vitro, and inhibited tumor growth and metastasis in vivo. Functional analysis showed that lncRNA MT1JP regulated FBXW7 expression by competitively binding to miR-92a-3p. MiR-92a-3p and down-regulated FBXW7 reversed cell phenotypes caused by lncRNA MT1JP by rescue analysis.ConclusionMT1JP, a down-regulated lncRNA in GC, was associated with malignant tumor phenotypes and survival of GC. MT1JP regulated the progression of GC by functioning as a competing endogenous RNA (ceRNA) to competitively bind to miR-92a-3p and regulate FBXW7 expression. Our study provided new insight into the post-transcriptional regulation mechanism of lncRNA MT1JP, and suggested that MT1JP may act as a potential therapeutic target and prognosis biomarker for GC.Electronic supplementary materialThe online version of this article (10.1186/s12943-018-0829-6) contains supplementary material, which is available to authorized users.
The HOX transcript antisense intergenic RNA (HOTAIR), a well-known long noncoding RNA, is involved in pathogenesis and progress of multiple tumors. Its ectopic expression and biological functions have been observed in gastric cancer. In this study, we conducted a two-stage case-control study to evaluate whether genetic variations of HOTAIR were associated with gastric cancer risk. We identified that a single nucleotide polymorphism (SNP) rs4759314 was significantly associated with the increased gastric cancer risk with an odds ratio (OR) of 1.39 [95% confidence interval (CI) = 1.13–1.71, P = 0.002] in the combined sets. Further functional experiments revealed the allele-specific effects on HOTAIR and HOXC11 expressions in gastric cancer tissues, of which HOTAIR and HOXC11 expressions of individuals carrying with AG genotype were much higher than those with AA genotype; similarly, the effects occurred in intronic promoter activities, of which the promoter activity of G allele was more pronounced than that of A allele. Interestingly, we identified a novel potential oncogene HOXC11 in gastric cancer pathogenesis with differential expression in gastric cancer tissues by association analysis with candidate gene strategy. These results suggest that SNP rs4759314 of HOTAIR acts as a potential biomarker for predicting gastric cancer, and the role of HOXC11 in gastric cancer etiology is warranted to further investigation.
Emerging evidence has showed that lncRNAs and trait-associated loci in lncRNAs play a crucial role in the progression of cancer including prostate cancer (PCa).This study aimed to investigate the molecular mechanisms of lncRNA PCAT1 involved in PCa development and its genetic variant associated with PCa risk. We applied cell proliferation and apoptosis assays to assess the effect of PCAT1 on PCa cell phenotypes. In addition, the genome-wide profiling of gene expression was assessed from three pairs of DU145 cells transfected with PCAT1 overexpression vector or negative control (NC) vector. Furthermore, a case-control study was conducted to explore the associations of four tagging single nucleotide polymorphisms (tagSNPs) and PCa risk in 850 PCa cases and 860 cancer-free controls. Our results showed that lncRNA PCAT1 promoted cell proliferation and inhibited cell apoptosis. Ingenuity pathway analysis (IPA) indicated that dysregulated mRNAs induced by overexpression of PCAT1 were primarily enriched in androgen-independent prostate tumor term and implicated in the disease and functions networks, such as cell death and survival, cell proliferation and gene expression. Besides, rs1902432 in PCAT1 was significantly associated with increased risk of PCa (Additive model: OR = 1.19, P = 0.014; Co-dominant model: CC vs. TT, OR = 1.45, P =0.012; Recessive model: CC vs. TT/CT, OR= 1.34, P = 0.027). This study suggests that PCAT1 may act as an oncogene through promoting cell proliferation and suppressing cell apoptosis in PCa development, and genetic variant in PCAT1 contributes to the susceptibility to PCa.
The association between air pollution and childhood respiratory disease is inconsistent. In the present study, we investigated a short-term effect of ambient air pollutants and daily childhood lower respiratory diseases (CLRD). Daily air pollutants, weather data, and CLRD data were collected from January 2014 to April 2015 (452 days) in Nanjing, China. Time-series regression and generalized additive models were used to assess the effects of air pollutants (PM10, PM2.5, NO2, SO2, O3, and CO) on CLRD. We observed that an interquartile range (IQR) increase in concentrations of PM10, NO2, and SO2 significantly increased the daily CLRD with 6 days cumulative effects (difference of estimates: 2.8%, 95% CI: 0.6–5.0%; 4.1%, 1.2–7.0%; 5.6%, 2.6–8.6%, respectively). However, no significant association was found in IQR concentrations of PM2.5, O3, and CO. Specifically, elevated PM10, PM2.5, NO2, and SO2 significantly increased the numbers of CLRD in cool season (3.6%, 1.5–5.7%; 2.4%, 0.3–4.5%; 4.9%, 2.9–7.0%; 6.3%, 3.7–9.0%, respectively). Additionally, the effect estimates of PM10, NO2, and SO2 in female and age >27 months were more pronounced than in male and age ≤27 months. This study suggested that short-term exposure to ambient PM10, NO2, and SO2 were associated with the increased CLRD numbers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.