Knowledge representation in autonomous robots with social roles has steadily gained importance through their supportive task assistance in domestic, hospital, and industrial activities. For active assistance, these robots must process semantic knowledge to perform the task more efficiently. In this context, ontology-based knowledge representation and reasoning (KR & R) techniques appear as a powerful tool and provide sophisticated domain knowledge for processing complex robotic tasks in a real-world environment. In this article, we surveyed ontology-based semantic representation unified into the current state of robotic knowledge base systems, with our aim being three-fold: (i) to present the recent developments in ontology-based knowledge representation systems that have led to the effective solutions of real-world robotic applications; (ii) to review the selected knowledge-based systems in seven dimensions: application, idea, development tools, architecture, ontology scope, reasoning scope, and limitations; (iii) to pin-down lessons learned from the review of existing knowledge-based systems for designing better solutions and delineating research limitations that might be addressed in future studies. This survey article concludes with a discussion of future research challenges that can serve as a guide to those who are interested in working on the ontology-based semantic knowledge representation systems for autonomous robots.
Humans have an innate ability of environment modeling, perception, and planning while simultaneously performing tasks. However, it is still a challenging problem in the study of robotic cognition. We address this issue by proposing a neuro-inspired cognitive navigation framework, which is composed of three major components: semantic modeling framework (SMF), semantic information processing (SIP) module, and semantic autonomous navigation (SAN) module to enable the robot to perform cognitive tasks. The SMF creates an environment database using Triplet Ontological Semantic Model (TOSM) and builds semantic models of the environment. The environment maps from these semantic models are generated in an on-demand database and downloaded in SIP and SAN modules when required to by the robot. The SIP module contains active environment perception components for recognition and localization. It also feeds relevant perception information to behavior planner for safely performing the task. The SAN module uses a behavior planner that is connected with a knowledge base and behavior database for querying during action planning and execution. The main contributions of our work are the development of the TOSM, integration of SMF, SIP, and SAN modules in one single framework, and interaction between these components based on the findings of cognitive science. We deploy our cognitive navigation framework on a mobile robot platform, considering implicit and explicit constraints for autonomous robot navigation in a real-world environment. The robotic experiments demonstrate the validity of our proposed framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.