We present a CW single-frequency laser at 1062 nm (linewidth <3 MHz) with 160 W of total output power based on a two stage fiber amplifier. A GTWave fiber is used for the first stage of the amplifier. A tapered double-clad fiber (T-DCF) is used for the second stage of the amplifier. The high output power is achieved due to the amplified spontaneous emission (ASE) filtering and increased stimulated Brillouin scattering (SBS) threshold inherent to the axially non-uniform geometry.
We have experimentally studied fundamental mode propagation in few meters long, adiabatically tapered step-index fibers with high numerical aperture, core diameter up to 117 μm (V = 38) and tapering ratio up to 18. The single fundamental mode propagation was confirmed by several techniques that reveal no signature of higher-order mode excitation. It can be, therefore, concluded that adiabatic tapering is a powerful method for selective excitation of the fundamental mode in highly multimode large-mode-area fibers. Annular near field distortion observed for large output core diameters was attributed to built-in stress due to thermal expansion mismatch between core and cladding materials. The mechanical stress could be avoided by an appropriate technique of fiber preform fabrication and drawing, which would prevent the mode field deformation and lead to reliable diffraction-limited fundamental mode guiding for very large core diameters.
A pulsed regime of short-cavity, heavily erbium-doped fiber lasers is of high interest for its possible applications in telecommunications and sensorics. Here, we demonstrate these lasers in two configurations, distributed feedback laser and compare it with a classic Fabry-Perot type laser. We have managed to create lasers that function stably with cavities as small as 50 mm. Pulse properties such as amplitude, frequency and duration, are in a good agreement with our theoretical analysis, which takes into account spontaneous emission. We report the observation of the thermal switching effect, which consists of the pulsing regime changing to CW upon cooling the laser cavities down to the liquid nitrogen temperature. We theoretically show that this effect may be explained by weakening of the up-conversion process responsible for the pulsed regime. The slowing of the up-conversion processes is due to the energy mismatch in this process, which is overcome by interaction with phonons. At low temperatures, the number of phonons decreases and pulsing switches off.Fiber lasers based on erbium-doped silica glass are actively used in modern fiber optics. [1][2][3][4][5] Erbium lasers operating at wavelengths near 1.5 μm are widely used in telecommunications, 6-10 optical sensing, 11-13 and radiophotonics. 14
ASSOCIATED CONTENT
In this paper, we demonstrated a novel, all-fiber highly sensitive bend sensor based on a four-core fiber rod with a diameter of 2.1 mm. We observed a high resolution of the sensor at a level of 3.6 × 10−3 m−1. Such a sensor design can be used in harsh environments due to the relatively small size and all-fiber configuration, containing no adhesive, nor welded joints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.