We consider a discrete nonlinear Klein-Gordon equations with damping and external drive. Using a small amplitude ansatz, one usually approximates the equation using a damped, driven discrete nonlinear Schrödinger equation. Here, we show for the first time the justification of this approximation by finding the error bound using energy estimate. Additionally, we prove the local and global existence of the Schrödinger equation. Numerical simulations are performed that describe the analytical results. Comparisons between discrete breathers of the Klein-Gordon equation and discrete solitons of the discrete nonlinear Schrödinger equation are presented.
We consider a damped, parametrically driven discrete nonlinear Klein-Gordon equation, that models coupled pendula and micromechanical arrays, among others. To study the equation, one usually uses a small-amplitude wave ansatz, that reduces the equation into a discrete nonlinear Schrödinger equation with damping and parametric drive. Here, we justify the approximation by looking for the error bound with the method of energy estimates. Furthermore, we prove the local and global existence of solutions to the discrete nonlinear Schrödinger equation. To illustrate the main results, we consider numerical simulations showing the dynamics of errors made by the discrete nonlinear equation. We consider two types of initial conditions, with one of them being a discrete soliton of the nonlinear Schrödinger equation, that is expectedly approximate discrete breathers of the nonlinear Klein-Gordon equation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.