Expanding elderly populations are a major social challenge in advanced countries worldwide and have led to a rapid increase in the number of elderly patients in intensive care units (ICUs). Innovative advances in medical technology have enabled lifesaving of patients in ICUs, but there remain various problems to improve their long‐term prognoses. Post‐intensive care syndrome (PICS) refers to physical, cognition, and mental impairments that occur during ICU stay, after ICU discharge or hospital discharge, as well as the long‐term prognosis of ICU patients. Its concept also applies to pediatric patients (PICS‐p) and the mental status of their family (PICS‐F). Intensive care unit‐acquired weakness, a syndrome characterized by acute symmetrical limb muscle weakness after ICU admission, belongs to physical impairments in three domains of PICS. Prevention of PICS requires performance of the ABCDEFGH bundle, which incorporates the prevention of delirium, early rehabilitation, family intervention, and follow‐up from the time of ICU admission to the time of discharge. Diary, nutrition, nursing care, and environmental management for healing are also important in the prevention of PICS. This review outlines the pathophysiology, prevention, and future directions of PICS.
A label-free biological sensor, which is based on the resonant transmission phenomenon of a thin metallic mesh, is proposed in the terahertz wave region. By using this sensor, we demonstrate the highly sensitive detection of small amounts of protein horseradish peroxidase. For quantitative investigation of the sensitivity of our sensor, horseradish peroxidase was printed on the metallic mesh surface by using a commercial available printer. A distinct shift of the transmission dip frequency is observed for 500pg∕mm2 (11fmol) of horseradish peroxidase printed on the metallic mesh, indicating the significantly high sensitivity of our sensor.
This paper reports solutions to the issues of profile control, microloading effect and suppression of the sidewall roughness of submicrometer trenches by modifying the regular conditions of the Bosch process that is often employed in the inductively coupled plasma (ICP) deep reactive ion etching (DRIE) system. Additionally, under the modified processing conditions, a high efficient antireflection structure can be fabricated.
Intensive care unit survivors experience prolonged physical impairments, cognitive impairments, and mental health problems, commonly referred to as post-intensive care syndrome (PICS). Previous studies reported the prevalence, assessment, and prevention of PICS, including the ABCDEF bundle approach. Although the management of PICS has been advanced, the outbreak of coronavirus disease 2019 (COVID-19) posed an additional challenge to PICS. The prevalence of PICS after COVID-19 extensively varied with 28–87% of cases pertaining to physical impairments, 20–57% pertaining to cognitive impairments, and 6–60% pertaining to mental health problems after 1–6 months after discharge. Each component of the ABCDEF bundle is not sufficiently provided from 16% to 52% owing to the highly transmissible nature of the virus. However, new data are emerging about analgesia, sedation, delirium care, nursing care, early mobilization, nutrition, and family support. In this review, we summarize the recent data on PICS and its new challenge in PICS after COVID-19 infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.