Polyamine oxidases (PAOs) are FAD-dependent enzymes involved in polyamine (PA) catabolism. Recent studies have revealed that plant PAOs are not only active in the terminal catabolism of PAs as demonstrated for maize apoplastic PAO but also in a polyamine back-conversion pathway as shown for most Arabidopsis PAOs. We have characterized Oryza sativa PAOs at molecular and biochemical levels. The rice genome contains 7 PAO isoforms that are termed OsPAO1 to OsPAO7. Of the seven PAOs, OsPAO3, OsPAO4, and OsPAO5 transcripts were most abundant in 2-week-old seedlings and mature plants, while OsPAO1, OsPAO2, OsPAO6, and OsPAO7 were expressed at very low levels with different tissue specificities. The more abundantly expressed PAOs--OsPAO3, OsPAO4, and OsPAO5--were cloned, and their gene products were produced in Escherichia coli. The enzymatic activities of the purified OsPAO3 to OsPAO5 proteins were examined. OsPAO3 favored spermidine (Spd) as substrate followed by thermospermine (T-Spm) and spermine (Spm) and showed a full PA back-conversion activity. OsPAO4 substrate specificity was similar to that of OsPAO5 preferring Spm and T-Spm but not Spd. Those enzymes also converted Spm and T-Spm to Spd, again indicative of PA back-conversion activities. Lastly, we show that OsPAO3, OsPAO4, and OsPAO5 are localized in peroxisomes. Together, these data revealed that constitutively and highly expressed O. sativa PAOs are localized in peroxisomes and catalyze PA back-conversion processes.
Mitophagy is a process that selectively degrades mitochondria. When mitophagy is induced in yeast, the mitochondrial outer membrane protein Atg32 is phosphorylated, interacts with the adaptor protein Atg11 and is recruited into the vacuole with mitochondria. We screened kinase-deleted yeast strains and found that CK2 is essential for Atg32 phosphorylation, Atg32-Atg11 interaction and mitophagy. Inhibition of CK2 specifically blocks mitophagy, but not macroautophagy, pexophagy or the Cvt pathway. In vitro, CK2 phosphorylates Atg32 at serine 114 and serine 119. We conclude that CK2 regulates mitophagy by directly phosphorylating Atg32.
To understand plasma-induced chemical processing in liquids, we investigated the formation of free radicals in aqueous solution exposed to different types of non-contact atmospheric-pressure helium plasma using the spin-trapping technique. Both hydroxyl radical (OH·) and superoxide anion radical (O2−·) adducts were observed when neutral oxygen gas was additionally supplied to the plasma. In particular, O2−· can be dominantly induced in the solution via oxygen flow into the afterglow gas of helium plasma. This type of plasma treatment can potentially be used in medical applications to control infectious diseases, because the O2−· is crucial for sterilization of liquids via atmospheric-pressure plasma.
Fusicoccin A and cotylenin A are structurally related diterpene glucosides and show a phytohormone-like activity. However, only cotylenin A induces the differentiation of human myeloid leukemia cells. Since the cotylenin A producer lost its ability to proliferate during preservation, a study on the relationship between structure and activity was carried out and a modified fusicoccin A with hydroxyl group at the 3-position showed a similar biological activity with that of cotylenin A. We then searched for an enzyme source that catalyzes the introduction of a hydroxyl group into the 3-position and found that brassicicene C, which is structurally related to fusicoccin A with hydroxyl group at the 3-position, was produced by Alternaria brassicicola ATCC96836. We recently cloned a brassicicene C biosynthetic gene cluster including the genes encoding fusicocca-2,10(14)-diene synthase and two cytochrome P450s, which were responsible for the formation of fusicocca-2,10(14)-diene-8β,16-diol. In this study, we report that a α-ketoglutarate dependent dioxygenase, the gene coding for which was located in the cluster, catalyzed a hydroxylation at the 3-position of fusicocca-2,10(14)-diene-8β,16-diol. On the other hand, a α-ketoglutarate-dependent dioxygenase, which had been identified in a fusicoccin A biosynthetic gene cluster, catalyzed the 16-oxidation of fusicocca-2,10(14)-diene-8β,16-diol to yield an aldehyde (8β-hydroxyfusicocca-1,10(14)-dien-16-al), although both dioxygenases had 51% amino acid sequence identity. These findings suggested that the dioxygenases played critical roles for the formation of the fusicoccin A-type and cotylenin A-/brassicicene C-type aglycons. Moreover, we showed that short-chain dehydrogenase/reductase located in the fusicoccin A biosynthetic gene cluster catalyzed the reduction of the aldehyde to yield fusicocca-1,10(14)-diene-8β,16-diol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.