Using pairings of male crayfish Procambarus clarkii with a 3–7% difference in size, we confirmed that physically larger crayfish were more likely to win encounters (winning probability of over 80%). Despite a physical disadvantage, small winners of the first pairings were more likely to win their subsequent conflicts with larger naive animals (winning probability was about 70%). By contrast, the losers of the first pairings rarely won their subsequent conflicts with smaller naive animals (winning probability of 6%). These winner and loser effects were mimicked by injection of serotonin and octopamine. Serotonin-injected naive small crayfish were more likely to win in pairings with untreated larger naive crayfish (winning probability of over 60%), while octopamine-injected naive large animals were beaten by untreated smaller naive animals (winning probability of 20%). Furthermore, the winner effects of dominant crayfish were cancelled by the injection of mianserin, an antagonist of serotonin receptors and were reinforced by the injection of fluoxetin, serotonin reuptake inhibitor, just after the establishment of social order of the first pairings. Injection of octopamine channel blockers, phentolamine and epinastine, by contrast, cancelled the loser effects. These results strongly suggested that serotonin and octopamine were responsible for winner and loser effects, respectively.
Active propagation of electrical signals in C . elegans neurons requires ion channels capable of regenerating membrane potentials. Here we report regenerative depolarization of a major gustatory sensory neuron, ASEL. Whole-cell patch-clamp recordings in vivo showed supralinear depolarization of ASEL upon current injection. Furthermore, stimulation of animal’s nose with NaCl evoked all-or-none membrane depolarization in ASEL. Mutant analysis showed that EGL-19, the α1 subunit of L-type voltage-gated Ca 2+ channels, is essential for regenerative depolarization of ASEL. ASEL-specific knock-down of EGL-19 by RNAi demonstrated that EGL-19 functions in C . elegans chemotaxis along an NaCl gradient. These results demonstrate that a natural substance induces regenerative all-or-none electrical signals in dendrites, and that these signals are essential for activation of sensory neurons for chemotaxis. As in other vertebrate and invertebrate nervous systems, active information processing in dendrites occurs in C . elegans , and is necessary for adaptive behavior.
For territorial animals, establishment of status-dependent dominance order is essential to maintain social stability. In agonistic encounters of the crayfish Procambarus clarkii, a difference of body length of 3-7% is enough for larger animals to become dominant. Despite a physical disadvantage, small winners of the first pairings were more likely to win subsequent conflicts with larger inexperienced animals. In contrast, the losers of the first pairings rarely won subsequent conflicts with smaller naive animals. Such experiences of previous winning or losing affected agonistic outcomes for a long period. The winner effects lasted more than 2 weeks and the loser effect lasted about 10 days. Injection of 5HT1 receptor antagonist into the dominant animals 15-30 min after establishment of dominance order blocked the formation of the winner effects. In contrast, injection of adrenergic-like octopamine receptor antagonist into subordinate animals blocked the formation of the loser. 5HT1 receptors are negatively coupled to adenylyl cyclase and adrenergic-like octopamine receptors are positively coupled. Consistent with this, dominant animals failed to show the winner effect when injected with pCPT-cAMP, a cAMP analogue, and subordinate animals failed to show a loser effect when injected with adenylyl cyclase inhibitor SQ 22536. These results suggest that an increase and decrease of cAMP concentration is essential in mediating loser and winner effects, respectively. Furthermore, formation of the loser effect was blocked by injection of protein kinase A (PKA) inhibitor H89, suggesting long-term memory of the loser effect is dependent on the cAMP-PKA signalling pathway.
Phototactic behaviours are observed from prokaryotes to amphibians and are a basic form of orientation. We showed that the marbled crayfish displays phototaxis in which the behavioural response reversed from negative to positive depending on external light conditions. Animals reared in a 12-L/12-D light cycle showed negative phototaxis during daytime and positive phototaxis during night-time. Animals reared under constant light conditioning showed negative phototaxis during day- and night-time, while animals reared under constant dark conditioning showed positive phototaxis during day- and night-time. Injection of serotonin leads to a reversal of negative to positive phototaxis in both light/dark-reared and light/light-reared animals while injection of dopamine induced reversed negative phototaxis in dark/dark-reared animals. Four hours of dark adaptation were enough for light/dark-reared animals to reverse phototaxis from negative to positive. Injection of a serotonin 5HT receptor antagonist blocked the reverse phototaxis while serotonin 5HT receptor antagonists had no effects. Similarly, dark/dark-reared animals reversed to showing negative phototaxis after 4 h of light adaptation. Injection of a dopamine DA receptor antagonist blocked this reverse phototaxis, while dopamine DA receptor antagonists had no effects. Injection of a cAMP analogue into light/dark-reared animals blocked reverse phototaxis after dark adaptation, while adenylate cyclase inhibitor in dark/dark-reared animals blocked reverse phototaxis after light adaptation. These results strongly suggest that serotonin mediates positive phototaxis owing to decreased cAMP levels, while dopamine-mediated negative phototaxis occurs due to increased cAMP levels. Supporting this, the ratio of serotonin to dopamine in the brain was much higher in dark/dark-reared than light/dark-reared animals.
Octopamine, a biogenic amine, modulates various behaviors, ranging from locomotion and aggression to learning and memory in invertebrates. Several studies recently demonstrated that tyramine, the biological precursor of octopamine, also affects behaviors independent of octopamine. Here we investigated the involvement of tyramine in agonistic interaction of the male crayfish Procambarus clarkii. When male crayfish fight, larger animals (3-7% difference in body length) are more likely to win. By contrast, direct injection of tyramine or octopamine counteracted the physical advantage of larger animals. Tyramine or octopamine-injected naive large animals were mostly beaten by untreated smaller naive animals. This pharmacological effect was similar to the loser effect in which subordinate larger animals are frequently beaten by smaller animals. Furthermore, loser effects were partly eliminated by either injection of epinastine, an octopamine blocker, or yohimbine, a tyramine blocker, and significantly diminished by injection of a mixture of both blockers. We also observed that tyramine levels in the subesophageal ganglion were remarkably increased in subordinate crayfish after losing a fight. These results suggest that tyramine modulates aggressive levels of crayfish and contributes to the loser effect in parallel with octopamine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.