Background: Recently, circulating tumor-cell-associated white blood cell (CTC-WBC) clusters have been reported to have prognostic value in some cancers. The prognostic role of CTC-WBC clusters in lung cancer has not yet been elucidated. Very little information is available about the biological characteristics of CTC-WBC clusters.Methods: A total of 82 patients with non-small cell lung cancer (NSCLC) were included in this study, and 61 patients with advanced-stage disease were closely followed-up. All patients had blood drawn prior to treatment. Subtraction enrichment and immunostaining-fluorescence in situ hybridization (SE-iFISH) platform was used to isolate and identify CTCs and CTC-WBC clusters. Kaplan-Meier survival analysis and Cox regression analysis were applied to assess patient progression-free survival (PFS). Further, qualitative and quantitative analyses the size and ploidy characteristics of CTC-WBC clusters.Results: Firstly, CTC-WBC clusters appeared more in the advanced (stage III and IV) stage (P=0.043) than in the early stage. Furthermore, the multivariable analysis (Cox proportional hazards model) revealed that the high-CTC (≥7/6 mL) group and CTC-WBC clusters (≥1/6 mL) positive group both had significantly worse PFS, with a hazard ratio (HR) of 2.89 [95% confidence interval (CI): 1.36-6.17, P=0.006] and 2.18 (95% CI: 1.07-4.43, P=0.031), respectively. In the conjoint analysis, compared to patients with <7 CTCs/6 mL without CTC-WBC clusters, patients with ≥7 CTCs/6 mL with CTC-WBC clusters had the highest risk of progression (HR =7.13, 95% CI: 2.51-20.23, P<0.001). In addition, the presence of ≥3-cell CTC-WBC clusters in patients may indicate a shorter PFS (P<0.05) and a higher risk of progression (HR =2.90, 95% CI: 1.06-7.89, P=0.037). Furthermore, compared with the characteristics of the total CTCs, almost all of the CTCs that could recruit WBCs were large cells (≥5 μm) and exhibited polyploidy (≥ tetraploid) (both P<0.01). Conclusions:The presence of CTC-WBC clusters was an independent prognostic factor for advanced NSCLC. The joint analysis of CTCs and CTC-WBC clusters could provide additional prognostic value to the enumeration of CTCs alone. Besides, most of the CTCs in CTC-WBC clusters were large polyploid cells.Keywords: Circulating tumor cell (CTC); circulating tumor-cell-associated white blood cell cluster (CTC-WBC cluster); non-small cell lung cancer (NSCLC); progression-free survival (PFS)
Aberrant expression of microRNAs (miRNAs or miRs) is associated with a number of human diseases, including lung cancer. Although numerous differentially expressed miRNAs have been identified in lung cancer via microarray and sequencing methods, to the best of our knowledge, only a small portion of these miRNAs have been experimentally verified. In the present study, miR-1301-3p expression levels in lung tumor tissues and lung cancer cells were measured by reverse transcription-quantitative PCR (RT-qPCR) and by analyzing previously published data. Cell Counting Kit-8 and Transwell assays were used to analyze the function of miR-1301-3p in lung cancer tissues and cells. Bioinformatics analysis, RT-qPCR, western blotting and a dual-luciferase reporter assay were performed to investigate the mechanism of miR-1301-3p in lung cancer cells. It was identified that miR-1301-3p is an upregulated miRNA in lung cancer via analyzing previously published microarray and The Cancer Genome Atlas-lung squamous cell carcinoma project data, and the upregulation of miR-1301-3p was confirmed in collected clinical samples and cells. Inhibition of miR-1301-3p suppressed lung cancer cell proliferation and migration. In addition, miR-1301-3p inhibition upregulated E-cadherin, an epithelial cell maker, and downregulated vimentin, a mesenchymal cell marker. Using bioinformatics analysis, it was revealed that polymerase I and transcript release factor (PTRF) is a target of miR-1301-3p. RT-qPCR, western blotting and dual-luciferase reporter assays demonstrated that PTRF is targeted by miR-1301-3p in lung cancer cells. The rescue experiments indicated that silencing PTRF could attenuate the inhibition of cell proliferation and migration induced by miR-1301-3p inhibitor in lung cancer cells. Furthermore, a strong negative correlation between miR-1301-3p and PTRF mRNA was identified in clinical samples. In summary, the present data highlight the involvement of miR-1301-3p in the proliferation and migration of lung cancer cells, indicating that miR-1301-3p may be a promising biomarker for lung cancer.
Background: The sterile alpha motif (SAM) domain and histidine-aspartate (HD) domain-containing protein 1 (SAMHD1) has been specifically linked to lung cancer. However, the underlying mechanisms in regulating lung adenocarcinoma (LAC) are unclear. The aim of this study was to assess the specific regulation between SAMHD1 and LAC.Methods: We retrospectively reviewed 238 patients who underwent surgery for LAC between January 2018 and December 2019. The expression of SAMHD1 was detected by quantitative reversetranscription polymerase chain reaction (RT-qPCR) in tumors and paired adjacent tissues. A lentivirus was used to overexpress SAMHD1 and stimulator of interferon genes (STING) in A549 cells; and RT-qPCR and western blot analysis were performed to verify their levels. Cell proliferation was evaluated via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and Celigo imaging cytometry.Cell apoptosis was detected by Annexin V staining. Overexpressed SAMHD1 suppressed LAC progression in a xenograft model. The DNA damage response inhibitor (DDRi) was used to assess the cell proliferation and apoptosis rate in SAMHD1-overexpressing A549 cells and the control group. A rescue experiment was carried out to evaluate the potential influence of SAMHD1 and STING.Results: A low expression of SAMHD1 was associated with advanced disease. Overexpression of SAMHD1 decreased cell proliferation and invasion in A549 cells, and the apoptosis rate was significantly higher in the overexpressed SAMHD1 cells than those in the control group. The overexpression of SAMHD1 inhibited tumor progression in the xenograft model. The expression of STING was lower in SAMHD1-overexpressing A549 cells than those in the wild-type group. Furthermore, the inhibited cellular behaviors of LAC cells resulting from the stable SAMHD1 expression were partially reversed after STING overexpression.Treatment with DDRi could inhibit cancer cell progression.Conclusions: Upregulation of SAMHD1 could suppress the progression of LAC in vivo and in vitro through the negative regulation of STING.
The CC chemokine receptor 9 (CCR9) and its natural secreted ligand CC motif chemokine ligand 25 (CCL25) have been implicated in cancer metastasis. However, their metastatic potential in non-small cell lung cancer (NSCLC) remains unclear. In the present study, immunohistochemistry was used to detect the expression and localization of CCR9, vascular endothelial growth factor (VEGF), matrix metalloproteinase (MMP)-1 and MMP-7 in lung cancer tissue and adjacent normal tissue. The association between the expression of CCR9 and clinical variables was also examined. Reverse transcription-quantitative PCR and western blotting were conducted to detect the expression of VEGF-C, VEGF-D, MMP-1 and MMP-7 in lung cancer cell lines (A549 and SK-MES-1). Migration and invasion assays were conducted to examine cell migration and invasion. Survival and mutation analysis were conducted using published datasets. The expressions of CCR9, VEGF, MMP-1 and MMP-7 were upregulated in cancer tissue, compared with adjacent normal tissue (all P<0.05). Patients with lower expression of CCR9 or CCL25 had better overall survival (OS) compared with those with higher CCR9 or CCL25 expression (P<0.05 and P=0.05, respectively). Furthermore, the expressions of VEGF-C, VEGF-D, MMP-1 and MMP-7 were higher in the CCL25-treated cell lines (all P<0.05), but MMP-7 protein expression was not affected by CCL25 treatment in SK-MES-1 cells (P>0.05). Following treatment with CCL25, lung cancer cells demonstrated higher migratory and invasive potential, which could be blocked by the CCR9 antibody (P<0.05). Survival analysis demonstrated that low expression levels of both CCR9 and CCL25 mRNA indicated favorable OS in patients with NSCLC. Altogether, these results suggested that CCL25 enhanced the phenotype associated with migration and invasion in NSCLC by regulating the expression of VEGF-C, VEGF-D, MMP-1 and MMP-7.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.