Transitive inference (TI) is the ability to infer unknown relationships from previous information. To test TI in non-human animals, transitive responding has been examined in a TI task where non-adjacent pairs were presented after premise pair training. Some mammals, birds and paper wasps can pass TI tasks. Although previous studies showed that some fish are capable of TI in the social context, it remains unclear whether fish can pass TI task. Here, we conducted a TI task in cleaner wrasses (Labroides dimidiatus), which interact with various client fishes and conspecifics. Because they make decisions based on previous direct and indirect interactions in the context of cleaning interactions, we predicted that the ability of TI is beneficial for cleaner fish. Four tested fish were trained with four pairs of visual stimuli in a 5-term series: A-B+, B-C+, C-D+, and D-E+ (plus and minus denote rewards and nonrewards, respectively). After training, a novel pair, BD (BD test), was presented wherein the fish chose D more frequently than B. In contrast, reinforcement history did not predict the choice D. Our results suggest that cleaner fish passed the TI task, similar to mammals and birds. Although the mechanism underlying transitive responding in cleaner fish remains unclear, this work contributes to understanding cognitive abilities in fish.
We used an expectancy violation procedure to ask whether cats could use a causal rule to infer the presence of an unseen object on hearing the noise it made inside a container and predict its appearance when the container was turned over. We presented cats with either an object dropping out of an opaque container or no object dropping out (turning-over phase) after producing either a rattling sound by shaking the container with the object inside, or no sound (shaking phase). The cats were then allowed to freely explore the experimental environment (exploration phase). The relation between the sound and the object matched with physical laws in half of the trials (congruent condition) and mismatched in the other half (incongruent condition). Inferring the presence of an unseen object from the noise was predicted to result in longer looking time in the incongruent condition. The prediction was supported by the cats' behavior during the turning-over phase. The results suggest that cats used a causal-logical understanding of auditory stimuli to predict the appearance of invisible objects. The ecology of cats' natural hunting style may favor the ability for inference on the basis of sounds.
Depth information is necessary for perceiving the real size of objects at varying visual distances. To investigate to what extent this size constancy present in another vertebrate class, we addressed the two questions using pigeons: (a) whether pigeons see a corridor illusion based on size constancy and (b) whether pigeons prioritize pictorial cues over motion parallax cues for size constancy, like humans. We trained pigeons to classify target sizes on a corridor. In addition, we presented a dynamic version of corridor illusion in which the target and corridor moved side by side. Target speed was changed to manipulate motion parallax. With the static corridor, pigeons overestimated the target size when it was located higher, indicating that pigeons see a corridor illusion like humans. With the dynamic corridor, the pigeons overestimated the target size depending on target position, as in the static condition, but target speed did not affect their responses, indicating that the pictorial precedence also applies to pigeons. In a follow-up experiment using the same stimulus, we confirmed that humans perceive object size based on pictorial cues. These results suggest that size constancy characteristics are highly similar between pigeons and humans, despite the differences in their phylogeny and neural systems.
Perceiving motion is a fundamental ability for animals. Primates integrate local 1D motion across orientation and space to compute a rigid 2D motion. It is unknown whether the rule of 2D motion integration is universal within the vertebrate clade; comparative studies of animals with different ecological backgrounds from primates may help answer that question. Here we investigated 2D motion integration in pigeons, using hierarchically structured motion stimuli, namely a barber-pole illusion and plaid motion. The pigeons were trained to report the direction of motion of random dots. When a barber-pole or plaid stimulus was presented, they reported the direction perpendicular to the grating orientation for barber-pole and the vector average of two component gratings for plaid motion. These results demonstrate that pigeons perceive different directions than humans from the same motion stimuli, and suggest that the 2D integrating rules in the primate brain has been elaborated through phylogenetic or ecological factors specific to the clade.
Integrating local motion signals detected by the primary motion detector is crucial for representing a rigid, two-dimensional motion. The nature of motion integration has been studied using stimuli consisting of two superimposed sinusoidal gratings of different orientations, called plaid motion, and it has been shown that humans perceive integrated motion in the direction where the component constraint lines are intersected. We previously found that pigeons and humans perceive different movement directions from plaid motion; pigeons responded to the vector average direction of the gratings. Although this suggests that the underlying processes of motion integration differ between the two species, the viewing distance in the pigeon experiment, which used a touch panel procedure, was much smaller than in typical human experiments. The current study investigated the potential effect of viewing distance on perception of plaid motion in pigeons. We trained six pigeons to detect whether motion directions were tilted leftward or rightward while a visual display was presented 0 or 40 cm from an operant chamber. The pigeons responded to plaid stimuli for both viewing distance conditions as if they perceived motion in the vector average direction of two-component gratings. The result indicates that the species difference in plaid perception is not an artefact of viewing distance and A Self-archived copy in Kyoto University Research Information Repository https://repository.kulib.kyoto-u.ac.jp 3 suggests that pigeons use a different strategy than humans for integrating visual motion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.