BackgroundGranulocyte–macrophage colony-stimulating factor (GM-CSF) has emerged as a crucial cytokine that activates myeloid cells to initiate tissue inflammation. However, the molecular actions of GM-CSF against innate immunity are still poorly characterized. Here, we investigated the in vitro effects of GM-CSF on the activation of human myeloid lineages, neutrophils, and the underlying intracellular signaling mechanism, including inflammasome activation.MethodsHuman neutrophils were stimulated with GM-CSF in the presence or absence of tofacitinib. The cellular supernatants were analyzed for interleukin-1 beta (IL-1β) and caspase-1 by enzyme-linked immunosorbent assay (ELISA) methods. Pro-IL-1β mRNA expressions in human neutrophils were analyzed by real-time polymerase chain reaction. Protein phosphorylation of neutrophils was assessed by Western blot using phospho-specific antibodies.ResultsStimulation with GM-CSF alone, but not tumor necrosis factor-alpha, was shown to increase the release of IL-1β and cleaved caspase-1 (p20) from human neutrophils. Tofacitinib, which inhibits GM-CSF–induced Janus kinase 2 (Jak2)-mediated signal transduction, completely abrogated GM-CSF–induced IL-1β and caspase-1 (p20) secretion from neutrophils. GM-CSF stimulation also induced pro-IL-1β mRNA expression in neutrophils and induced NLR family pyrin domain-containing 3 (NLRP3) protein expression. Although tofacitinib pretreatment marginally inhibited GM-CSF–induced pro-IL-1β mRNA expression, tofacitinib completely abrogated NLRP3 protein expression in neutrophils.ConclusionsThese results indicate that GM-CSF signaling induces NLRP3 expression and subsequent IL-1β production by affecting neutrophils, which may cause the activation of innate immunity. Therefore, GM-CSF is a key regulator of the NLRP3 inflammasome and IL-1β production by activating innate immune cells. This process can be blocked by tofacitinib, which interferes with JAK/STAT signaling pathways.Electronic supplementary materialThe online version of this article (10.1186/s13075-018-1685-x) contains supplementary material, which is available to authorized users.
ObjectiveFriend leukaemia virus integration 1 (Fli-1) regulates chemokine/cytokine expression and thus plays an important role in the development of lupus nephritis. Chemokine CXC ligand 13 (CXCL13) is a chemokine that promotes the formation of ectopic lymphoid structures and has been reported to be associated with the pathogenesis of lupus nephritis. The relationship between Fli-1 and CXCL13 is unknown. This study aims to elucidate whether Fli-1 impacts CXCL13 expression and contributes to the progression of lupus-like nephritis in adult MRL/lpr mouse.MethodsSerum CXCL13 levels were measured in adult wild-type (WT) MRL/lpr mice and Fli-1 heterozygote knockout (Fli-1+/−) MRL/lpr mice (4 months old or older) using ELISA. Renal mRNA expression (CXCL13 and related molecules) was measured using real-time PCR method. Kidneys were removed, stained and evaluated using a pathology scoring system. The grade of CXCL13 or CXC-chemokine receptor type 5 (CXCR5)-positive immune cell infiltration into the kidney was evaluated using immunostaining with anti-CXCL13 or anti-CXCR5 antibodies. We also used immunofluorescence staining with CXCL13- and CD11b-specific antibodies to detect the infiltration of CXCL13/CD11b double-positive immune cells.ResultsSerum CXCL13 levels in Fli-1+/−MRL/lpr mice were significantly lower than that in WT MRL/lpr mice (545.5 and 960.5 pg/mL, p=0.02). Renal expression of CXCL13 mRNA and SRY-related HMG box4 (Sox4) (an important factor for B-cell development) levels were significantly lower in Fli-1+/−MRL/lpr mice. Renal histology scores in WT MRL/lpr mice revealed significantly increased glomerular inflammation. Despite similar interstitial immune cell infiltration into the kidney, the number of CXCL13- and CXCR5-positive cells was significantly lower in Fli-1+/−MRL/lpr mice than in WT mice. Furthermore, immunofluorescence staining revealed that Fli-1+/-MRL/lpr mice had significantly fewer CXCL13/CD11b double-positive immune cells.ConclusionFli-1 regulates renal Sox4 mRNA expression and infiltration of CXCR5-positive cells as well as CXCL13/CD11b double-positive immune cells into the kidney, which affects CXCL13 expression and lupus-like nephritis.
Altered expression of adhesion molecules in immune cells has been demonstrated in rheumatoid arthritis (RA). Carcinoembryonic–antigen–related cell–adhesion molecule 1 (CEACAM1) is an adhesion molecule that acts as a coinhibitory receptor in the immune system. We investigated the role of CEACAM1 in immune cell subsets of patients with RA. Peripheral blood was obtained from 37 patients with RA and 20 healthy controls (HC). The expression of CEACAM1 and T–cell immunoglobulin mucin domain molecule (TIM) –3 on peripheral blood mononuclear cells and neutrophils was analyzed by flow cytometry. Intracellular TIM–3 expression was analyzed using cellular lysates by Western blot analysis. Serum levels of soluble CEACAM1 (sCEACAM1) were estimated by an enzyme-linked immunosorbent assay. CEACAM1 expression was not detected in peripheral blood mononuclear cells, including in CD14(+) monocytes and CD3(+) lymphocytes isolated from patients with RA or HC. However, substantial cell–surface expression of CEACAM1 was detected in peripheral blood neutrophils, and it was significantly elevated in samples from patients with RA without remission compared to those in remission. There was no significant difference in serum levels of sCEACAM1 between patients with RA and HC. Cell-surface expression of TIM-3 was not detected in peripheral blood neutrophils from patients with RA or HC but was seen in CD14(+) monocytes. However, there was no significant difference in TIM–3 expression on monocytes between patients with RA and HC. Our data indicate that cell-surface expression of CEACAM1 on peripheral blood neutrophils are higher in patients with RA and that it is associated with rheumatoid inflammation. Further studies are needed to explore the potential role of CEACAM1 in rheumatoid inflammatory pathways.
Background The number of biological DMARDs (bDMARDs) used in elderly patients with rheumatoid arthritis (RA) has increased in recent years. We aimed to compare the drug retention rates and safety of abatacept (ABT) and tocilizumab (TCZ) in elderly patients with RA. Methods A total 125 elderly patients with RA (>65 years) who began therapy with either ABT (n = 47) or TCZ (n = 78) between 2014 and 2021 at our institute were enrolled. We compared the drug retention rate and clinical response at 24 weeks between elderly patients with RA treated with ABT and those treated with TCZ. Adverse events (AEs) and the reasons for drug discontinuation were assessed. Results There was no significant difference in demographic characteristics except for the use of glucocorticoid between the ABT and TCZ groups. There was no significant difference in the drug retention rate between the ABT and TCZ groups. Furthermore, there was no significant difference in the discontinuation rates due to the lack of effectiveness between these two groups. The proportions of the patients archiving low disease activity at 24 weeks did not differ significantly between the two groups. Whereas, the discontinuation rates due to AEs, including interstitial lung disease (ILD), seemed higher in the TCZ group than in the ABT group. In TCZ-treated group, the concomitant use of methotrexate (MTX) significantly increased the incidences of AEs leading to the discontinuation of TCZ. Whereas these was no significant impact of concomitant use of MTX on the incidences of AEs leading to discontinuation in ABT-treated group. Conclusions In elderly patients with RA treated with ABT and TCZ, drug retention rates were equivalent between the two groups. There were some differences in safety profiles between ABT and TCZ, and the rates of discontinuation due to AEs, including ILD, seem to be lower with ABT than with TCZ in elderly patients with RA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.