The giant panda (Ailuropoda melanoleuca) is a native species to China. They are rare and endangered and are regarded as the ‘national treasure’ and ‘living fossil’ in China. For the time being, there are only about 2500 giant pandas in the world. Therefore, we still have to do much more efforts to protect the giant pandas. In captive wildlife, the cataract incidence of mammalian always increases with age. Currently, in China, the proportion of elderly giant pandas who suffering from cataract has reached 20%. The eye disorder thus has a strong influence on the physical health and life quality of the elderly giant pandas. To discover the genes associated with the pathogenesis of cataract in the elderly giant panda and achieve the goal of early assessment and diagnosis of cataract in giant pandas during aging, we performed whole genome methylation sequencing in 3 giant pandas with cataract and 3 healthy giant pandas using methylation-dependent restriction-site associated DNA sequencing (MethylRAD). In the present study, we obtained 3.62M reads, on average, for each sample, and identified 116 and 242 differentially methylated genes (DMGs) between the two groups under the context of CCGG and CCWGG on genome, respectively. Further KEGG and GO enrichment analyses determined a total of 110 DMGs that are involved in the biological functions associated with pathogenesis of cataract. Among them, 6 DMGs including EEA1, GARS, SLITRK4, GSTM3, CASP3, and EGLN3 have been linked with cataract in old age.
Background The giant panda (Ailuropoda melanoleuca) is an endangered mammalian species native to China. Fewer than 2500 giant pandas are known to exist, many of which are bred in captivity as a means to preserve and repopulate the species. Like other captive mammals, giant pandas acquire age-related cataracts, reducing their quality of life. Recent comparative genome-wide methylation analysis revealed 110 differentially methylated genes associated with cataract formation including six also associated with the formation of age-related cataracts in humans. Results To investigate the pathological pathway in greater detail, here we used RNA-Seq analysis to investigate the differential expression profiles of genes in three giant pandas with cataracts and three healthy controls. We identified more than 700 differentially expressed genes, 29 of which were selected for further analysis based on their low q-value. We found that many of the genes encoded regulatory and signaling proteins associated with the control of cell growth, migration, differentiation and apoptosis, supporting previous research indicating a key role for apoptosis in cataract formation. Conclusion The identification of genes involved in the formation of age-related cataracts could facilitate the development of predictive markers, preventative measures and even new therapies to improve the life of captive animals.
Background Cataracts are defects of the lens that cause progressive visual impairment and ultimately blindness in many vertebrate species. Most cataracts are age-related, but up to one third have an underlying genetic cause. Cataracts are common in captive zoo animals, but it is often unclear whether these are congenital or acquired (age-related) lesions. Results Here we used a functional candidate gene screening approach to identify mutations associated with cataracts in a captive giant panda (Ailuropoda melanoleuca). We screened 11 genes often associated with human cataracts and identified a novel missense mutation (c.686G > A) in the MIP gene encoding major intrinsic protein. This is expressed in the lens and normally accumulates in the plasma membrane of lens fiber cells, where it plays an important role in fluid transport and cell adhesion. The mutation causes the replacement of serine with asparagine (p.S229N) in the C-terminal tail of the protein, and modeling predicts that the mutation induces conformational changes that may interfere with lens permeability and cell–cell interactions. Conclusion The c.686G > A mutation was found in a captive giant panda with a unilateral cataract but not in 18 controls from diverse regions in China, suggesting it is most likely a genuine disease-associated mutation rather than a single-nucleotide polymorphism. The mutation could therefore serve as a new genetic marker to predict the risk of congenital cataracts in captive giant pandas.
Gut microbiota influences nutrient metabolism and immunity of animal hosts. Better understanding of the composition and diversity of gut microbiota contributes to conservation and management of threatened animals both in situ and ex situ. In this study, we applied 16S rRNA gene amplicon sequencing to evaluate the composition and diversity of the fecal bacterial community of four gibbon genera (Family Hylobatidae) at four Chinese zoos. The results showed that the dominant bacterial phyla were Bacteroidetes, Firmicutes, and Proteobacteria and dominant families were Prevotellaceae (Bacteroidetes), Spirochaetaceae (Spirochaetes) and Ruminococcaceae (Firmicutes) in the gut of all gibbons. Both captive site and host genus had significant effects on the relative abundance of dominant bacteria and structure of gut bacterial community. We found that captive site and host genus did not solely impact gut bacterial diversity, but the interaction between them did. This study provides basic knowledge for gut microbiota of all four gibbon genera and contributes to management and conservation of captive gibbons.
Rhesus macaques (Macaca mulatta) are the most widely distributed species of Old World monkey and are frequently used as animal models to study human health and disease. Their gastrointestinal microbial community likely plays a major role in their physiology, ecology and evolution. Herein, we compared the fecal microbiome and antibiotic resistance genes in 15 free-ranging and 81 zoo-captive rhesus macaques sampled from two zoos in China, using both 16S amplicon sequencing and whole genome shotgun DNA sequencing approaches. Our data revealed similar levels of microbial diversity/richness among the three groups, although the composition of each group differed significantly and were particularly marked between the two zoo-captive and one wild groups. Zoo-captive animals also demonstrated a greater abundance and diversity of antibiotic genes. Through whole genome shotgun sequencing we also identified a mammalian (simian) associated adenovirus. Overall, this study provides a comprehensive analysis of resistomes and microbiomes in zoo-captive and free-ranging monkeys, revealing that semi-captive wildlife might harbor a higher diversity of antimicrobial resistant genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.