Satellite video (SV) can acquire rich spatiotemporal information on the Earth. Single object tracking (SOT) in SVs enables the continuous acquisition of the position and range of a specific object, expanding the field of remote-sensing applications. In SVs, objects are small with limited features and vulnerable to tracking drift. In this paper, a correlation filter-based dual-flow (DF) tracker is proposed to explore how the hybridization of spatial-spectral feature fusion and motion model can boost tracking. To represent small objects, the DF adaptively fuses complementary features using a state-aware indicator in feature flow. In motion flow, the indicator perceives the confidence of the feature flow. A dual-mode prediction model is then constructed to simulate the object's motion pattern, and cooperate linear and non-linear motion patterns to implement SOT in SVs. The ablation experiments demonstrate the dual-flow contributes to tracking. Experimental comparisons on 14 real SVs captured by the Jilin-1 satellite constellation show that DF achieves optimal performance with an area under the curve of 0.912 in the precision plot, 0.700 in the success plot, and a speed of 155.2 frames per second. This work would encourage the development of remote-sensing ground surveillance.
Single-object tracking (SOT) in satellite videos (SVs) is a promising and challenging task in the remote sensing community. In terms of the object itself and the tracking algorithm, the rotation of small-sized objects and tracking drift are common problems due to the nadir view coupled with a complex background. This article proposes a novel rotation adaptive tracker with motion constraint (RAMC) to explore how the hybridization of angle and motion information can be utilized to boost SV object tracking from two branches: rotation and translation. We decouple the rotation and translation motion patterns. The rotation phenomenon is decomposed into the translation solution to achieve adaptive rotation estimation in the rotation branch. In the translation branch, the appearance and motion information are synergized to enhance the object representations and address the tracking drift issue. Moreover, an internal shrinkage (IS) strategy is proposed to optimize the evaluation process of trackers. Extensive experiments on space-born SV datasets captured from the Jilin-1 satellite constellation and International Space Station (ISS) are conducted. The results demonstrate the superiority of the proposed method over other algorithms. With an area under the curve (AUC) of 0.785 and 0.946 in the success and precision plots, respectively, the proposed RAMC achieves optimal performance while running at real-time speed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.