Environmental sound recognition has been a hot topic in the domain of audio recognition. How to select the optimal feature subsets and enhance the performance of classification precisely is an urgent problem to be solved. Ensemble learning, a new kind of method presented recently, has been an effective way to improve the accuracy of classification in feature selection. In this paper, experiments were performed on environmental sound dataset. An improved method based on constraint score and multimodels ensemble feature selection methods (MmEnFs) were exploited in the experiments. The experimental results show that when enough attributes are selected, the improved method can get a better performance compared to other feature selection methods. And the ensemble feature selection method, which combines other methods, can obtain the optimal performance in most cases.
To solve the problems of susceptibility to image noise, subjectivity of training sample selection, and inefficiency of state-of-the-art change detection methods with heterogeneous images, this study proposes a post-classification change detection method for heterogeneous images with improved training of hierarchical extreme learning machine (HELM). After smoothing the images to suppress noise, a sample selection method is defined to train the HELM for each image, in which the feature extraction is respectively implemented for heterogeneous images and the parameters need not be fine-tuned. Then, the multi-temporal feature maps extracted from the trained HELM are segmented to obtain classification maps and then compared to generate a change map with changed types. The proposed method is validated experimentally by using one set of synthetic aperture radar (SAR) images obtained from Sentinel-1, one set of optical images acquired from Google Earth, and two sets of heterogeneous SAR and optical images. The results show that compared to state-of-the-art change detection methods, the proposed method can improve the accuracy of change detection by more than 8% in terms of the kappa coefficient and greatly reduce run time regardless of the type of images used. Such enhancement reflects the robustness and superiority of the proposed method.
Single-object tracking (SOT) in satellite videos (SVs) is a promising and challenging task in the remote sensing community. In terms of the object itself and the tracking algorithm, the rotation of small-sized objects and tracking drift are common problems due to the nadir view coupled with a complex background. This article proposes a novel rotation adaptive tracker with motion constraint (RAMC) to explore how the hybridization of angle and motion information can be utilized to boost SV object tracking from two branches: rotation and translation. We decouple the rotation and translation motion patterns. The rotation phenomenon is decomposed into the translation solution to achieve adaptive rotation estimation in the rotation branch. In the translation branch, the appearance and motion information are synergized to enhance the object representations and address the tracking drift issue. Moreover, an internal shrinkage (IS) strategy is proposed to optimize the evaluation process of trackers. Extensive experiments on space-born SV datasets captured from the Jilin-1 satellite constellation and International Space Station (ISS) are conducted. The results demonstrate the superiority of the proposed method over other algorithms. With an area under the curve (AUC) of 0.785 and 0.946 in the success and precision plots, respectively, the proposed RAMC achieves optimal performance while running at real-time speed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.