We have developed a simple Marangoni flow-induced method for self-assembling nanoparticles (NPs) into both hexagonal and stripelike patterns. First, a NPs/ethanol suspension was spread on a slightly nonwettable and a wettable silicon oxide substrate. The Marangoni flow, induced by simultaneous evaporation of ethanol and condensation of water, leads to the formation of the corresponding hexagonal distributed circular NP rings and dotted stripes. The inter-ring spacing and ring size of the hexagonal patterns can be tuned by varying the relative humidity of the N2 stream blown over the slightly nonwettable substrate. Hexagonal patterns of circular NP patches can also be fabricated by lowering the evaporation of the condensed water droplets. On the wettable substrate, complex patterns result when the humidity of the N2 stream changes.
Herein, a new and facile patterning method is demonstrated for the scalable fabrication of gold elliptical rings (ERs) in a controlled manner over large areas. In this method, well-ordered hexagonally arrayed polystyrene (PS) rings, fabricated by colloidal lithography, were used as masters to generate poly(dimethylsiloxane) (PDMS) stamps with circular apertures. The stamps were then stretched and utilized as molds for creating elliptical PS rings by a capillary filling process. Through subsequent reactive ion etching and chemical wet-etching, the elliptical PS rings could be readily transferred into an underlying gold film, leading to the formation of gold ERs. Since the aspect ratio (AR) of the elliptical PS rings could be controlled by varying the applied strain during the capillary filling process, gold ERs with different ARs could be fabricated in a scalable manner. The optical properties of the gold ERs were characterized by UV-vis/NIR and IR extinction measurements. The ERs exhibited only odd modes of polarization-dependent plasmonic resonances at normal incidence. The experiments and corresponding theoretical studies illustrated that all resonant modes could be tuned across a broad spectral range from the visible to the mid infrared (550-4700 nm) by simply varying the AR of the ERs. Moreover, the experimental data were confirmed by COMSOL simulations.
Two kinds of phenomenon have been observed when a liquid drop falls to a surface of the same liquid. The first, which can nearly always be observed, involves splash and some degree of penetration and "cleavage" and the conditions for this occurrence are identified. The experimental observations are compared with previous computational results. The second kind of colliding phenomena can be observed only by chance in an ordinary falling drop experiment and appears to be random. It includes the two phenomena investigated in this paper: the floating drop and the rolling drop.
Herein we introduce a novel strategy based on capillary force lithography (CFL) to fabricate asymmetric polymeric ring structures by applying both shear and nomal forces to a poly(dimethylsiloxane) stamp. The mechanism for the formation of asymmetric rings is caused by the deflection of cylindrical PDMS pillars due to the shear load, which is therefore termed deflected CFL (dCFL). The asymmetric polymeric rings could be readily transferred to an underlying gold layer to generate split ring structures with tunable opening angles. Asymmetric structures based upon trigular and square-shaped pillars were also fabricated. These elements were formed into periodic arrays over surface areas as large as 1 cm(2) and may have optical and electromagnetic applications.
In this article, we report the development of a novel, simple, and cost-effective method for fabricating porous polymer films with controllable interpore distances, pore sizes, and arrangements using water droplets induced by Marangoni flow as templates. First, a spread-thin ethanol film on a partially water-wettable substrate is exposed to a humid airflow, facilitating the evaporation and recession of the ethanol film. Meanwhile, water in the airflow condenses on the ethanol film and accumulates near the receding contact line, which induces the formation of water fingers at the receding contact line and, finally, ordered arrays of water droplets after detachment. The formation of the hexagonal and square arrays of water droplets is due to the pinning and sliding of the water fingers on the silicone oxide (SiOx) and silicon (Si) substrates, respectively. By varying the thickness of the ethanol film spread on the Si substrate, the sliding velocity of water fingers can be tuned, subsequently leading to the fabrication of other arrangements. The interdroplet distance and droplet size can be dependently controlled by tuning the humidity of the airflow. The ordered arrays of water droplets on the substrate are then utilized to fabricate porous polymer films by dip-coating the substrate with a polystyrene solution. Films with hexagonal and square (and other arrangements) arrays of pores are fabricated on the silicon oxide (SiOx) and silicon (Si) substrates, respectively. The pore size can also be independently tuned by further condensation or evaporation of formed water droplets, leading to porous polymer films with both close- and non-close-packed arrays of pores. The ordered porous polymer films can be further used as templates for fabricating metal post patterns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.