Lactobacillus helveticus H9 is a probiotic bacterium originating from traditional Tibetan kurut. It has high angiotensin-converting enzyme-inhibitory (ACEI) and antihypertensive activities. We aimed to evaluate the effects of L. helveticus H9 supplementation in yogurt fermentation and storage. We monitored changes of multiple parameters over 28 d of storage at 4°C; namely, pH, titratable acidity, free amino groups, ACEI activity, physical properties, volatile flavor compounds, and sensory quality. Supplementation of L. helveticus H9 enhanced fermented milk acidification and proteolysis, resulting in a shorter fermentation time. The H9 treatment significantly increased the ACEI activity of the fermented milks. Fifteen key volatile flavors were detected by solid-phase microextraction-gas chromatography-mass spectrometry across all samples. More alcohols, aldehydes, and nitrogenous compounds, especially acetoin and benzaldehyde, were detected in the H9-supplemented fermented milks. The human sensory scores for flavor and texture, but not appearance, were lower for the H9-supplemented fermented milks, particularly beyond 2 wk of cold storage. Our results will be of interest to the dairy industry for developing novel functional dairy products.
This work performed a large scale assessment for organophosphorus pesticides (OPPs) degradation activity of 121 Lactobacillus (L.) plantarum strains. Six L. plantarum strains (P9, IMAU80110, IMAU40100, IMAU10585, IMAU10209, and IMAU80070) were found to possess high capacity of degrading three commonly used OPPs, namely dimethoate, phorate, and omethoate; and they were selected for more detailed characterization. Moreover, the three OPPs were mainly detected in the culture supernatants but not in the cell extracts, further confirming that the OPPs were degraded rather than absorbed by the cells. Among the six selected strains, P9 was most tolerant to gastrointestinal juices and bile. We thus used ultra-high performance liquid chromatography electron spray ionization coupled with time-of-flight mass spectrometry (UPLC/ESI-Q-TOF/MS) to generate the metabolomic profiles of the strain P9 growing in MRS medium with and without containing phorate. By using orthogonal partial least squares discriminant analysis, we identified some potential phorate-derived degradative products. This work has identified novel lactic acid bacteria resources for application in pesticide degradation. Our results also shed light on the phorate degradation mechanism by L. plantarum P9.
Our study assayed angiotensin-converting enzyme (ACE) inhibitory activity and fermentation characteristics of 41 food-originated Lactobacillus casei strains in fermented milk production. Twenty-two of the tested strains produced fermented milks with a high ACE inhibitory activity of over 60%. Two strains (IMAU10408 and IMAU20411) expressing the highest ACE inhibitory activity were selected for further characterization. The heat stability (pasteurization at 63°C for 30 min, 75°C for 25 s, and 85°C for 20 s) and resistance to gastrointestinal proteases (pepsin, trypsinase, and sequential pepsin/trypsinase treatments) of the ACE inhibitory activity in the fermented milks produced with IMAU10408 and IMAU20411 were determined. Interestingly, such activity increased significantly after the heat or protease treatment. Because of the shorter milk coagulation time of L. casei IMAU20411 (vs. IMAU10408), it was selected for optimization experiments for ACE inhibitory activity production. Our results show that fermentation temperature of 37°C, inoculum density of 1 × 10 cfu/g, and fermentation time of 12 h were optimal for maximizing ACE inhibitory activity. Finally, the metabolite profiles of L. casei IMAU20411 after 2 and 42 h of milk fermentation were analyzed by ultra-HPLC electron spray ionization coupled with time-of-flight mass spectrometry. Nine differential abundant metabolites were identified, and 2 of them showed a strong and positive correlation with fermented milk ACE inhibitory activity. To conclude, we have identified a novel ACE inhibitory L. casei strain, which has potential for use as a probiotic in fermented milk production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.