The present study applied the PacBio single molecule, real-time sequencing technology (SMRT) in evaluating the quality of silage production. Specifically, we produced four types of Medicago sativa silages by using four different lactic acid bacteria-based additives (AD-I, AD-II, AD-III and AD-IV). We monitored the changes in pH, organic acids (including butyric acid, the ratio of acetic acid/lactic acid, γ-aminobutyric acid, 4-hyroxy benzoic acid and phenyl lactic acid), mycotoxins, and bacterial microbiota during silage fermentation. Our results showed that the use of the additives was beneficial to the silage fermentation by enhancing a general pH and mycotoxin reduction, while increasing the organic acids content. By SMRT analysis of the microbial composition in eight silage samples, we found that the bacterial species number and relative abundances shifted apparently after fermentation. Such changes were specific to the LAB species in the additives. Particularly, Bacillus megaterium was the initial dominant species in the raw materials; and after the fermentation process, Pediococcus acidilactici and Lactobacillus plantarum became the most prevalent species, both of which were intrinsically present in the LAB additives. Our data have demonstrated that the SMRT sequencing platform is applicable in assessing the quality of silage.
In this study, a novel metabolomics technique based on ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry in the MS mode was used to investigate the milk metabolomics of healthy, subclinical, and clinical mastitis cows, which were classified based on somatic cell count and presentation of clinical symptoms. Meanwhile, univariate and multivariate statistical analyses were performed to identify the significant differences across the 3 groups. Compared with healthy milk samples, less glucose, d-glycerol-1-phosphate, 4-hydroxyphenyllactate, l-carnitine, sn-glycero-3-phosphocholine, citrate, and hippurate were detected in the clinical mastitic milk samples, whereas less d-glycerol-1-phosphate, benzoic acid, l-carnitine, and cis-aconitate were found in the subclinical mastitic milk samples. Meanwhile, the milk concentration of arginine and Leu-Leu increased in both the clinical and subclinical mastitis groups. Besides, less 4-hydroxyphenyllactate, cis-aconitate, lactose, and oxoglutarate were detected in the clinical than the subclinical mastitic milk samples, whereas the abundance of some oligopeptides (Leu-Ala, Phe-Pro-Ile, Asn-Arg-Ala-Ile, and Val-Phe-Val-Tyr) increased by over 7.95-fold. Our results suggest that significant variations exist across healthy and mastitis cows. The current metabolomics approach will help in better understanding the pathobiology of mastitis, although clinical validation will be required before field application.
Lactobacillus helveticus H9 is a probiotic bacterium originating from traditional Tibetan kurut. It has high angiotensin-converting enzyme-inhibitory (ACEI) and antihypertensive activities. We aimed to evaluate the effects of L. helveticus H9 supplementation in yogurt fermentation and storage. We monitored changes of multiple parameters over 28 d of storage at 4°C; namely, pH, titratable acidity, free amino groups, ACEI activity, physical properties, volatile flavor compounds, and sensory quality. Supplementation of L. helveticus H9 enhanced fermented milk acidification and proteolysis, resulting in a shorter fermentation time. The H9 treatment significantly increased the ACEI activity of the fermented milks. Fifteen key volatile flavors were detected by solid-phase microextraction-gas chromatography-mass spectrometry across all samples. More alcohols, aldehydes, and nitrogenous compounds, especially acetoin and benzaldehyde, were detected in the H9-supplemented fermented milks. The human sensory scores for flavor and texture, but not appearance, were lower for the H9-supplemented fermented milks, particularly beyond 2 wk of cold storage. Our results will be of interest to the dairy industry for developing novel functional dairy products.
This work performed a large scale assessment for organophosphorus pesticides (OPPs) degradation activity of 121 Lactobacillus (L.) plantarum strains. Six L. plantarum strains (P9, IMAU80110, IMAU40100, IMAU10585, IMAU10209, and IMAU80070) were found to possess high capacity of degrading three commonly used OPPs, namely dimethoate, phorate, and omethoate; and they were selected for more detailed characterization. Moreover, the three OPPs were mainly detected in the culture supernatants but not in the cell extracts, further confirming that the OPPs were degraded rather than absorbed by the cells. Among the six selected strains, P9 was most tolerant to gastrointestinal juices and bile. We thus used ultra-high performance liquid chromatography electron spray ionization coupled with time-of-flight mass spectrometry (UPLC/ESI-Q-TOF/MS) to generate the metabolomic profiles of the strain P9 growing in MRS medium with and without containing phorate. By using orthogonal partial least squares discriminant analysis, we identified some potential phorate-derived degradative products. This work has identified novel lactic acid bacteria resources for application in pesticide degradation. Our results also shed light on the phorate degradation mechanism by L. plantarum P9.
Our study assayed angiotensin-converting enzyme (ACE) inhibitory activity and fermentation characteristics of 41 food-originated Lactobacillus casei strains in fermented milk production. Twenty-two of the tested strains produced fermented milks with a high ACE inhibitory activity of over 60%. Two strains (IMAU10408 and IMAU20411) expressing the highest ACE inhibitory activity were selected for further characterization. The heat stability (pasteurization at 63°C for 30 min, 75°C for 25 s, and 85°C for 20 s) and resistance to gastrointestinal proteases (pepsin, trypsinase, and sequential pepsin/trypsinase treatments) of the ACE inhibitory activity in the fermented milks produced with IMAU10408 and IMAU20411 were determined. Interestingly, such activity increased significantly after the heat or protease treatment. Because of the shorter milk coagulation time of L. casei IMAU20411 (vs. IMAU10408), it was selected for optimization experiments for ACE inhibitory activity production. Our results show that fermentation temperature of 37°C, inoculum density of 1 × 10 cfu/g, and fermentation time of 12 h were optimal for maximizing ACE inhibitory activity. Finally, the metabolite profiles of L. casei IMAU20411 after 2 and 42 h of milk fermentation were analyzed by ultra-HPLC electron spray ionization coupled with time-of-flight mass spectrometry. Nine differential abundant metabolites were identified, and 2 of them showed a strong and positive correlation with fermented milk ACE inhibitory activity. To conclude, we have identified a novel ACE inhibitory L. casei strain, which has potential for use as a probiotic in fermented milk production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.