ABSTRACT. We describe a new collaborative network, the Motus Wildlife Tracking System (Motus; https://motus.org), which is an international network of researchers using coordinated automated radio-telemetry arrays to study movements of small flying organisms including birds, bats, and insects, at local, regional, and hemispheric scales. Radio-telemetry has been a cornerstone of tracking studies for over 50 years, and because of current limitations of geographic positioning systems (GPS) and satellite transmitters, has remained the primary means to track movements of small animals with high temporal and spatial precision. Automated receivers, along with recent miniaturization and digital coding of tags, have further improved the utility of radio-telemetry by allowing many individuals to be tracked continuously and simultaneously across broad landscapes. Motus is novel among automated arrays in that collaborators employ a single radio frequency across receiving stations over a broad geographic scale, allowing individuals to be detected at sites maintained by others. Motus also coordinates, disseminates, and archives detections and associated metadata in a central repository. Combined with the ability to track many individuals simultaneously, Motus has expanded the scope and spatial scale of research questions that can be addressed using radio-telemetry from local to regional and even hemispheric scales. Since its inception in 2012, more than 9000 individuals of over 87 species of birds, bats, and insects have been tracked, resulting in more than 250 million detections. This rich and comprehensive dataset includes detections of individuals during all phases of the annual cycle (breeding, migration, and nonbreeding), and at a variety of spatial scales, resulting in novel insights into the movement behavior of small flying animals. The value of the Motus network will grow as spatial coverage of stations and number of partners and collaborators increases. With continued expansion and support, Motus can provide a framework for global collaboration, and a coordinated approach to solving some of the most complex problems in movement biology and ecology.Le Système de suivi de la faune Motus : un réseau de recherche collaboratif visant à mieux comprendre le déplacement des animaux RÉSUMÉ. Le Système de suivi de la faune Motus (Motus; https://motus.org), un nouveau réseau collaboratif de chercheurs internationaux, repose sur un ensemble coordonné de stations automatisées de radiotélémétrie pour étudier le déplacement de petits organismes volant, comme les oiseaux, les chauves-souris et les insectes, aux échelles locales et régionales, et à celle de l'hémisphère. Pierre angulaire pour les études de suivi depuis plus de 50 ans, la radiotélémétrie est encore le principal moyen de suivre le déplacement de petits animaux avec une grande précision temporelle et spatiale, en raison des limites que présentent les émetteurs basés sur le système de positionnement géographique (GPS) ou satellite. Des stations réceptrices automatisées,...
Anthropogenic input of mercury (Hg) into the environment has elevated risk to fish and wildlife, particularly in northeastern North America. Investigations into the transfer and fate of Hg have focused on inhabitants of freshwater aquatic ecosystems, as these are the habitats at greatest risk for methylmercury (MeHg) biomagnification. Deviating from such an approach, we documented MeHg availability in a terrestrial montane ecosystem using a suite of insectivorous passerines. Intensive and extensive sampling of Bicknell's thrush (Catharus bicknelli) indicated significant heterogeneity in MeHg availability across 21 mountaintops in northeastern North America. Southern parts of the breeding range tended to be at greater risk than northern parts. Mean blood Hg concentrations for Bicknell's thrush at 21 distinct breeding sites ranged from 0.08 to 0.38 ug/g (ww) and at seven Greater Antillean wintering sites ranged from 0.03 to 0.42 ug/g (ww). Overall concentrations were significantly greater in wintering than in breeding areas. Mercury exposure profiles for four passerine species on Mt. Mansfield, Vermont indicated greatest MeHg uptake in Bicknell's thrush and yellow-rumped warbler (Dendroica coronata) and lowest in blackpoll warbler (Dendroica striata) and white-throated sparrow (Zonotrichia albicollis). The MeHg and total Hg ratio in blood in these four species was nearly 1:1. There was no correlation between blood and feather Hg concentrations in breeding Bicknell's thrush, in part because of apparent retention of winter Hg body burdens, within-season variation of MeHg availability, and confounding factors such as influences from age. Adult thrushes had significantly higher concentrations of feather Hg than did young-of-the-year. Although individual patterns of inter-year feather Hg concentrations were disordered, some individuals exhibited bioaccumulation of MeHg. Female blood Hg concentrations were significantly lower than males', in part because females have additional depurating mechanisms through eggs. Older male Bicknell's thrushes that breed in New England are therefore likely at greatest risk. Mechanisms for Hg methylation in montane areas without standing water are not yet fully understood. However, recent studies indicate that MeHg is present in forest tree leaves and leaf detritus; saturated soils and other moist microhabitats may also contribute to MeHg availability. Our finding of a correlation between regional litterfall Hg flux patterns and Bicknell's thrush blood Hg concentrations demonstrates on-site availability of MeHg. Further investigations into MeHg availability in montane environments are recommended to assess risk to insectivorous passerines, particularly the Bicknell's thrush.
There is an overdue and urgent need to establish patterns of migratory connectivity linking breeding grounds, stopover sites, and wintering grounds of migratory birds. Such information allows more effective application of conservation efforts by applying focused actions along movement trajectories at the population level. Stable isotope methods, especially those using stable hydrogen isotope abundance in feathers (δ2Hf) combined with Bayesian assignment techniques incorporating prior information such as relative abundance of breeding birds, now provide a fast and reliable means of establishing migratory connectivity, especially for Neotropical migrants that breed in North America and molt prior to fall migration. Here we demonstrate how opportunistic sampling of feathers of 30 species of wintering birds in Cuba, Venezuela, Guatemala, Puerto Rico, and Mexico, regions that have typically been poorly sampled for estimating migratory connectivity, can be assigned to breeding areas in North America through both advanced spatial assignment to probability surfaces and through simpler map lookup approaches. Incorporating relative abundance information from the North American Breeding Bird Survey in our Bayesian assignment models generally resulted in a reduction in potential assignment areas on breeding grounds. However, additional tools to constrain longitude such as DNA markers or other isotopes would be desirable for establishing breeding or molt origins of species with broad longitudinal distributions. The isotope approach could act as a rapid means of establishing basic patterns of migratory connectivity across numerous species and populations. We propose a large‐scale coordinated sampling effort on the wintering grounds to establish an isotopic atlas of migratory connectivity for North American Neotropical migrants and suggest that isotopic variance be considered as a valuable metric to quantify migratory connectivity. This initiative could then act as a strategic template to guide further efforts involving stable isotopes, light‐sensitive geolocators, and other technologies.
Body condition (i.e. relative mass after correcting for structural size) affects the behaviour of migrating birds, but how body condition affects migratory performance, timing and fitness is still largely unknown. Here, we studied the effects of relative body condition on individual departure decisions, wind selectivity, flight speed and timing of migration for a long-distance migratory shorebird, the red knot Calidris canutus rufa. By using automated VHF telemetry on a continental scale, we studied knots' migratory movements with unprecedented temporal resolution over a 3-year period. Knots with a higher relative body condition left the staging site later than birds in lower condition, yet still arrived earlier to their Arctic breeding grounds compared to knots in lower relative body condition. They accomplished this by selecting more favourable winds at departure, thereby flying faster and making shorter stops en route. Individuals with a higher relative body condition in spring migrated south up to a month later than individuals in lower condition, suggesting that individuals in better condition were more likely to have bred successfully. Moreover, individuals with a lower relative body condition in spring had a lower probability of being detected in autumn, suggestive of increased mortality. The pressure to arrive early to the breeding grounds is considered to be an important constraint of migratory behaviour and this study highlights the important influence of body condition on migratory decisions, performance and potentially fitness of migrant birds.
Aim Measuring dispersal is crucial for estimating demographic rates that inform conservation plans for rare and threatened species. We evaluated natal dispersal patterns in Bicknell's thrush (Catharus bicknelli) across most of the breeding range using a 10‐year data set of stable‐hydrogen isotope ratios in feathers (δ2HF) grown on the natal area and sampled 1 year later at the first breeding site. Location North‐eastern United States and south‐eastern Canada. Methods We used δ2HF values of adult thrushes sampled at 25 breeding sites as prior information for assigning first‐time breeders to their natal site. We calculated the minimum distance birds moved from their natal to first breeding site and fit these data to three statistical distributions for characterizing the importance of long‐distance dispersal: the exponential, Weibull and half‐Cauchy. Finally, we assessed differences in the probability of dispersal across the breeding range and through time to understand spatio‐temporal variation in demographic connectivity. Results The δ2HF values of first‐time breeders were lower compared with those of adults, a difference that was greater at the southern compared with northern breeding range extreme. Assignment tests accounting for age differences in δ2HF suggested that most birds dispersed < 200 km from their natal area and within the centre of the breeding range, whereas comparatively few individuals dispersed up to 700 km. A Weibull distribution provided the best fit to these data. Two of three corrections for age differences in δ2HF indicated that natal dispersal probability declined by 30–38% from 1996 to 2005. Main conclusions Our findings suggest that estimating natal dispersal with δ2HF measurements may contribute to understanding the resilience of geographically isolated Bicknell's thrush populations. Declining natal dispersal may be symptomatic of observed population declines and could compound this trend by limiting demographic exchange between habitat patches predicted to be increasingly isolated by natural and anthropogenic habitat changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.