Abstract. Process interactions and chain reactions, the present shift of cryospheric hazard zones due to atmospheric warming, and the potential far reach of glacier disasters make it necessary to apply modern remote sensing techniques for the assessment of glacier and permafrost hazards in highmountains. Typically, related hazard source areas are situated in remote regions, often difficult to access for physical and/or political reasons. In this contribution we provide an overview of air-and spaceborne remote sensing methods suitable for glacier and permafrost hazard assessment and disaster management. A number of image classification and change detection techniques support high-mountain hazard studies. Digital terrain models (DTMs), derived from optical stereo data, synthetic aperture radar or laserscanning, represent one of the most important data sets for investigating high-mountain processes. Fusion of satellite stereo-derived DTMs with the DTM from the Shuttle Radar Topography Mission (SRTM) is a promising way to combine the advantages of both technologies. Large changes in terrain volume such as from avalanche deposits can indeed be measured even by repeat satellite DTMs. Multitemporal data can be used to derive surface displacements on glaciers, permafrost and landslides. Combining DTMs, results from spectral image classification, and multitemporal data from change detection and displacement measurements significantly improves the detection of hazard potentials. Modelling of hazardous processes based on geographic information systems (GIS) complements the remote sensing analyses towards an integrated assessment of glacier and permafrost hazards in mountains. Major present limitations in the application of remote sensing to glacier and permafrost hazards in mountains are, on the one hand, of technical nature (e.g. combination and fusion of different methods and data; improved unCorrespondence to: A. Kääb (kaeaeb@geo.unizh.ch) derstanding of microwave backscatter). On the other hand, better dissemination of remote sensing expertise towards institutions involved in high-mountain hazard assessment and management is needed in order to exploit the large potential of remote sensing in this field.
Abstract. In this paper, we analyse the calving activity of the Bowdoin Glacier, north-western Greenland, in 2015 by combining satellite images, UAV (unmanned aerial vehicle) photogrammetry and ice flow modelling. In particular, a highresolution displacement field is inferred from UAV orthoimages taken immediately before and after the initiation of a large fracture, which induced a major calving event. A detailed analysis of the strain rate field allows us to accurately map the path taken by the opening crack. Modelling results reveal (i) that the crack was more than half-thickness deep, filled with water and getting irreversibly deeper when it was captured by the UAV and (ii) that the crack initiated in an area of high horizontal shear caused by a local basal bump immediately behind the current calving front. The asymmetry of the bed at the front explains the systematic calving pattern observed in May and July-August 2015. As a corollary, we infer that the calving front of the Bowdoin Glacier is currently stabilized by this bedrock bump and might enter into an unstable mode and retreat rapidly if the glacier keeps thinning in the coming years. Beyond this outcome, our study demonstrates that the combination of UAV photogrammetry and ice flow modelling is a promising tool to horizontally and vertically track the propagation of fractures responsible for large calving events.
The subglacial hydrology of tidewater glaciers is a key but poorly understood component of the complex ice-ocean system, which aects sea level rise. As it is extremely dicult to access the interior of a glacier, our knowledge relies mostly on the observation of input variables such as air temperature, and output variables such as the ice ow velocities reecting the englacial water pressure, and the dynamics of plumes reecting the discharge of meltwater into the ocean. In this study we use a cost-eective Vertical Take-O and Landing (VTOL) Unmanned Aerial Vehicle (UAV) to monitor the daily movements of Bowdoin Glacier, northwest Greenland, and the dynamics of its main plume. Using Structure-from-Motion photogrammetry and feature-tracking techniques, we obtained 22 high-resolution ortho-images and 19 velocity elds at the calving front for 12 days in July 2016. Our results show a two-day-long speed-up event (up to 170%) caused by an increase in buoyant subglacial forces with a strong spatial variability revealing that enhanced acceleration is an indication of shallow bedrock. Further, we used the Particle Image Velocimetry (PIV) method to analyze water ow from successive UAV images taken while ying over the main plume of the glacier. We found that PIV successfully captures the area of radially diverging ow of the plume, and provides information on spatial and time variability as no other remote sensing technique can. Most interestingly, the active part of the plume features pulsating water jets at the time scale of seconds, and is 1 to 5 times smaller than its visual footprint dened by the iceberg-free area. Combined with an ice ow model or a non-steady plume model, our approach has the potential to generate a novel set of input data to gather information about the depth of the bedrock, the discharge of meltwater, or the subglacial melting rate of tidewater glaciers.
In the Swiss Alps, climatic changes have not only caused glacier retreat, but also likely increased sedimentation downstream of glaciers. This material either originates from below the glacier or from periglacial environments, which are exposed as glaciers retreat, and often consist of easily erodible sediment. Griesgletscher's catchment in the Swiss Alps was examined to quantify erosion in the proglacial area, possible hydrological drivers and contributions of the sub-and periglacial sources. Digital elevation models, created from annual aerial photographs, were subtracted to determine annual volume changes in the proglacial area from 1986 to 2014. These data show a strong increase in proglacial erosion in the decade prior to 2012, coincident with increasing proglacial area size. However, examination of the gradient between discharge and sediment evacuation, and modeled sediment transport, could suggest that the proglacial area began to stabilize and sediment supply is limited. The large influx of sediment into the proglacial reservoir, which is roughly 2.5 times greater than the amount of sediment eroded from the proglacial area, demonstrates the importance of subglacial erosion to the catchment's sediment budget. Although far more sediment originates subglacially, erosion rates in the proglacial area are over 50 times greater than the rest of the catchment. In turn, both sub-and periglacial processes, in addition to constraining sediment supply, must be considered for assessing future sediment dynamics as glacier area shrinks and proglacial areas grow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.