The capability of reprogramming movement responses following changes in the visual goal has been studied through the double-step paradigm. These studies have shown that: (a) continuous internal feedback-loops correct unconsciously the dynamic errors throughout the movement; (b) proprioceptive information and/or the efference copy have a privileged status among central processes, insuring on-line regulation of the initial motor commands; and (c) generation of the motor program starts after target presentation, and is continuously updated in the direction of the current internal representation of the target, at least until the onset of hand movement. This main corrective process of the initial program appears to be basically independent of visual reafference from the moving hand. However, the agreement with the possibility of a visuomotor loop, based on the comparison of the new updated representation of the target position and on the information from the moving hand, has not determined whether the correcting process is proprioceptive feedback dependent, or whether internal feedback-loops (efferent copies) are responsible for quick corrections of unfolding motor responses. To answer this question, the present experiment investigated the pointing behavior of a deafferented subject, using a double-step paradigm under various conditions of visual feedback and movement initiation. Overall, the present study (a) clearly showed the capacity of the motor system to modify and correct erroneous trajectories on the mere basis of internal feedback-loops and (b) emphasized the crucial role played by the target jump/arm triggering delay and the importance of the eye efferent copy for providing information about the spatial goal of the movement.
This experiment investigated the prediction of load force (LF) in impulsive collisions inferred from anticipatory adjustments of grip force (GF) used to stabilise a hand-held object. Subjects used a precision grip to hold the object between thumb and index finger of their right hand and used the arm either: (1) to move the object to produce a collision by hitting the lower end of a pendulum, causing it to swing to one of three target angles, or (2) to hold the object still while receiving a collision produced by the experimenter releasing the pendulum from one of three angles. Visual feedback of the pendulum's trajectory was available in the production task only. In all conditions, subjects increased GF in advance of the collision. In receiving the collision without advance information, subjects set GF levels to the mid-range of the experienced forces. When subjects possessed knowledge about the maximum angle of pendulum swing - either because they were going to produce it or because they were verbally informed - magnitude of the anticipatory-GF magnitude response was scaled to the predicted LF magnitude. Furthermore, GF was scaled to LF with a higher gain when producing compared to receiving the collision. This suggests that updating forward models through a semantic route is not as powerful as when the updating is achieved through the more direct route of dynamic exploration.
As an aid to studying the efficiency of grip force scaling in the context of collisions, we present a simple cost-effective approach to estimating the slip ratio--that is, the minimum grip-to-load-force ratio needed to prevent object slippage. The grip apparatus comprises a sturdy load cell to measure grip force and two linear potentiometers to provide detailed description of finger movements. The slip ratio was estimated by plotting the magnitude of finger movement against the grip-to-load-force ratio at the time of impact. The slip ratio was dependent on the direction of loading, which stresses the importance of estimating slip ratios in a context similar to that of the experiment in which the efficiency of subjects' behavior is to be assessed.
In daily living, we continuously interact with our environment. This environment is rarely stable and living beings show remarkable adaptive capacities. When we reach for an object, it is necessary to localize the position of this object with respect to our own body before programming an adequate arm movement. If the target remains stable, the programmed movement brings the hand near the target. However, what happens when the target suddenly jumps to another position in space? The aim of this work was to investigate how rapid aiming movements are corrected when the target is displaced close to movement onset. Our results reveal that rapid movements can be modified and that the efficiency of trajectory amendments vary according to task (directional or direction/amplitude pointings) and environment (structured or darkness). We were most interested in the specific role played by peripheral and/or central feedback information (efferent copy) in the control of aiming movements. The results suggest that the two types of loops are complementary in movement regulation. However, their predominance varies according to the nature of the task at hand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.