All DNA (cytosine-5)-methyltransferases contain a single conserved cysteine. It has been proposed that this cysteine initiates catalysis by attacking the C6 of cytosine and thereby activating the normally inert C5 position. We show here that substitutions of this cysteine in the E. coli methylase M. EcoRII with either serine or tryptophan results in a complete loss of ability to transfer methyl groups to DNA. Interestingly, mutants with either serine or glycine substitution bind tightly to substrate DNA. These mutants resemble the wild-type enzyme in that their binding to substrate is not eliminated by the presence of non-specific DNA in the reaction, it is sensitive to methylation status of the substrate and is stimulated by an analog of the methyl donor. Hence the conserved cysteine is not essential for the specific stable binding of the enzyme to its substrate. However, substitution of the cysteine with the bulkier tryptophan does reduce DNA binding. We also report here a novel procedure for the synthesis of DNA containing 5-fluorocytosine. Further, we show that a DNA substrate for M. EcoRII in which the target cytosine is replaced by 5-fluorocytosine is a mechanism-based inhibitor of the enzyme and that it forms an irreversible complex with the enzyme. As expected, this modified substrate does not form irreversible complexes with the mutants.
Polymerase-mediated recombination based on DNA polymerase chain reactions (PCRs) has been used to carry out directed joining at a present point of two DNA fragments initially contained in a plasmid and a single-stranded synthetic DNA. The process includes copying of these fragments by PCR with generation of an overlapping homologous region. Such overlap of 12 base pairs in length was found to be sufficient to provide further DNA joining also by use of PCR.
A synthetic ribooligonucleotide, r(CCAGACUGm-AAGAUCUGG), corresponding to the unmodified yeast tRNA(Phe) anticodon arm is shown to bind to poly(U) programmed small ribosomal subunits of both E. coli and rabbit liver with affinity two order less than that of a natural anticodon arm. Its deoxyriboanalogs d(CCAGACTGAAGATCTGG) and d(CCAGA)r(CUGm-AAGA)d(TCTGG), are used to study the influence of sugar-phosphate modification on the interaction of tRNA with programmed small ribosomal subunits. The deoxyribooligonucleotide is shown to adopt a hairpin structure. Nevertheless, as well as oligonucleotide with deoxyriboses in stem region, it is not able to bind to 30S or 40S ribosomal subunits in the presence of ribo-(poly(U] or deoxyribo-(poly (dT) template. The deoxyribooligonucleotide also has no inhibitory effect on tRNA(Phe) binding to 30S ribosomes at 10-fold excess over tRNA. Neomycin does not influence binding of tRNA anticodon arm analogs used. Complete tRNA molecule and natural modifications of anticodon arm are considered to stabilize the arm structure needed for its interaction with a programmed ribosome.
The reaction of the mixed anhydride of [3H]ATP and mesitylenecarboxylic acid and soluble mitochondrial adenosine triphosphatase is accompanied by the covalent binding of one molecule of the inhibitor to a molecule of the enzyme and results in the inhibition of adenosine triphosphatase activity by more than 90%. The electrophoresis of adenosine triphosphatase modified by reaction with the mixed anhydride of [3H]ATP and mesitylenecarboxylic acid in polyacrylamide gel in the presence of sodium dodecyl sulphate showed that the inhibitor is bound to the beta-subunit of the enzyme. The results suggest that ATP may also bind to the beta-subunit of the adenosine triphosphatase with its triphosphate moiety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.